AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.205 0.285 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 13.05
Date: Mon, 27 Jan 2025 Prob (F-statistic): 7.36e-05
Time: 22:00:09 Log-Likelihood: -100.24
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.2870 255.808 0.435 0.668 -424.125 646.699
C(dose)[T.1] 212.6703 316.275 0.672 0.509 -449.300 874.641
expression -6.1297 27.464 -0.223 0.826 -63.612 51.352
expression:C(dose)[T.1] -16.7277 33.759 -0.495 0.626 -87.387 53.932
Omnibus: 1.214 Durbin-Watson: 1.833
Prob(Omnibus): 0.545 Jarque-Bera (JB): 0.930
Skew: 0.204 Prob(JB): 0.628
Kurtosis: 2.103 Cond. No. 966.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.669
Model: OLS Adj. R-squared: 0.636
Method: Least Squares F-statistic: 20.21
Date: Mon, 27 Jan 2025 Prob (F-statistic): 1.58e-05
Time: 22:00:09 Log-Likelihood: -100.39
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 214.3724 146.012 1.468 0.158 -90.203 518.948
C(dose)[T.1] 56.0210 8.861 6.322 0.000 37.537 74.505
expression -17.2000 15.667 -1.098 0.285 -49.882 15.482
Omnibus: 1.486 Durbin-Watson: 1.872
Prob(Omnibus): 0.476 Jarque-Bera (JB): 0.949
Skew: 0.095 Prob(JB): 0.622
Kurtosis: 2.024 Cond. No. 326.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Mon, 27 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 22:00:09 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.007
Model: OLS Adj. R-squared: -0.040
Method: Least Squares F-statistic: 0.1584
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.695
Time: 22:00:09 Log-Likelihood: -113.02
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -15.3611 238.982 -0.064 0.949 -512.352 481.630
expression 10.1293 25.449 0.398 0.695 -42.794 63.053
Omnibus: 3.838 Durbin-Watson: 2.436
Prob(Omnibus): 0.147 Jarque-Bera (JB): 1.741
Skew: 0.329 Prob(JB): 0.419
Kurtosis: 1.824 Cond. No. 316.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.225 0.644 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.605
Model: OLS Adj. R-squared: 0.498
Method: Least Squares F-statistic: 5.628
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0138
Time: 22:00:09 Log-Likelihood: -68.324
No. Observations: 15 AIC: 144.6
Df Residuals: 11 BIC: 147.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.0651 219.072 1.068 0.308 -248.108 716.238
C(dose)[T.1] -698.2558 370.254 -1.886 0.086 -1513.179 116.667
expression -18.6275 24.463 -0.761 0.462 -72.469 35.214
expression:C(dose)[T.1] 83.9158 41.510 2.022 0.068 -7.446 175.278
Omnibus: 1.101 Durbin-Watson: 1.366
Prob(Omnibus): 0.577 Jarque-Bera (JB): 0.736
Skew: -0.021 Prob(JB): 0.692
Kurtosis: 1.916 Cond. No. 601.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.089
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.0251
Time: 22:00:09 Log-Likelihood: -70.694
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -26.6508 198.563 -0.134 0.895 -459.283 405.982
C(dose)[T.1] 49.7178 15.633 3.180 0.008 15.657 83.778
expression 10.5167 22.160 0.475 0.644 -37.766 58.799
Omnibus: 2.266 Durbin-Watson: 0.830
Prob(Omnibus): 0.322 Jarque-Bera (JB): 1.670
Skew: -0.772 Prob(JB): 0.434
Kurtosis: 2.463 Cond. No. 231.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.00629
Time: 22:00:09 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03725
Date: Mon, 27 Jan 2025 Prob (F-statistic): 0.850
Time: 22:00:09 Log-Likelihood: -75.279
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.0370 257.354 0.171 0.867 -511.943 600.017
expression 5.5643 28.831 0.193 0.850 -56.722 67.850
Omnibus: 0.318 Durbin-Watson: 1.656
Prob(Omnibus): 0.853 Jarque-Bera (JB): 0.459
Skew: -0.005 Prob(JB): 0.795
Kurtosis: 2.143 Cond. No. 229.