AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.525 0.477 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.726
Model: OLS Adj. R-squared: 0.683
Method: Least Squares F-statistic: 16.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.43e-05
Time: 04:51:35 Log-Likelihood: -98.218
No. Observations: 23 AIC: 204.4
Df Residuals: 19 BIC: 209.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 238.4384 201.210 1.185 0.251 -182.699 659.576
C(dose)[T.1] -589.7660 295.613 -1.995 0.061 -1208.491 28.959
expression -21.2773 23.230 -0.916 0.371 -69.898 27.343
expression:C(dose)[T.1] 73.4352 33.840 2.170 0.043 2.607 144.263
Omnibus: 0.509 Durbin-Watson: 1.588
Prob(Omnibus): 0.775 Jarque-Bera (JB): 0.569
Skew: 0.298 Prob(JB): 0.752
Kurtosis: 2.511 Cond. No. 842.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.19e-05
Time: 04:51:35 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -61.1834 159.358 -0.384 0.705 -393.599 271.232
C(dose)[T.1] 51.4816 9.028 5.703 0.000 32.650 70.313
expression 13.3269 18.392 0.725 0.477 -25.038 51.692
Omnibus: 0.388 Durbin-Watson: 2.112
Prob(Omnibus): 0.824 Jarque-Bera (JB): 0.533
Skew: 0.209 Prob(JB): 0.766
Kurtosis: 2.382 Cond. No. 326.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:51:35 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.102
Model: OLS Adj. R-squared: 0.059
Method: Least Squares F-statistic: 2.385
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.137
Time: 04:51:35 Log-Likelihood: -111.87
No. Observations: 23 AIC: 227.7
Df Residuals: 21 BIC: 230.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -296.1245 243.448 -1.216 0.237 -802.402 210.153
expression 43.0758 27.891 1.544 0.137 -14.926 101.078
Omnibus: 2.259 Durbin-Watson: 2.805
Prob(Omnibus): 0.323 Jarque-Bera (JB): 1.126
Skew: 0.025 Prob(JB): 0.569
Kurtosis: 1.917 Cond. No. 315.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.320 0.582 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.465
Model: OLS Adj. R-squared: 0.320
Method: Least Squares F-statistic: 3.193
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0665
Time: 04:51:35 Log-Likelihood: -70.602
No. Observations: 15 AIC: 149.2
Df Residuals: 11 BIC: 152.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 216.2982 360.601 0.600 0.561 -577.378 1009.975
C(dose)[T.1] 259.9274 936.881 0.277 0.787 -1802.133 2321.988
expression -16.4749 39.885 -0.413 0.688 -104.261 71.311
expression:C(dose)[T.1] -22.5128 101.875 -0.221 0.829 -246.739 201.713
Omnibus: 3.139 Durbin-Watson: 0.937
Prob(Omnibus): 0.208 Jarque-Bera (JB): 2.085
Skew: -0.902 Prob(JB): 0.352
Kurtosis: 2.719 Cond. No. 1.27e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.374
Method: Least Squares F-statistic: 5.175
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 04:51:35 Log-Likelihood: -70.636
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 247.4795 318.425 0.777 0.452 -446.308 941.267
C(dose)[T.1] 52.9282 16.876 3.136 0.009 16.159 89.698
expression -19.9256 35.217 -0.566 0.582 -96.656 56.805
Omnibus: 2.816 Durbin-Watson: 0.988
Prob(Omnibus): 0.245 Jarque-Bera (JB): 1.935
Skew: -0.860 Prob(JB): 0.380
Kurtosis: 2.629 Cond. No. 381.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:51:35 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.023
Model: OLS Adj. R-squared: -0.052
Method: Least Squares F-statistic: 0.3060
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.590
Time: 04:51:35 Log-Likelihood: -75.126
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -118.6574 383.955 -0.309 0.762 -948.142 710.828
expression 23.2403 42.012 0.553 0.590 -67.521 114.002
Omnibus: 0.141 Durbin-Watson: 1.485
Prob(Omnibus): 0.932 Jarque-Bera (JB): 0.357
Skew: -0.041 Prob(JB): 0.837
Kurtosis: 2.249 Cond. No. 354.