AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.160 0.157 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.700
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 14.74
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.38e-05
Time: 05:15:38 Log-Likelihood: -99.278
No. Observations: 23 AIC: 206.6
Df Residuals: 19 BIC: 211.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 53.5286 73.609 0.727 0.476 -100.537 207.594
C(dose)[T.1] 137.7481 87.478 1.575 0.132 -45.346 320.843
expression 0.1119 12.079 0.009 0.993 -25.170 25.394
expression:C(dose)[T.1] -14.8122 14.617 -1.013 0.324 -45.406 15.782
Omnibus: 1.383 Durbin-Watson: 1.653
Prob(Omnibus): 0.501 Jarque-Bera (JB): 0.453
Skew: -0.305 Prob(JB): 0.797
Kurtosis: 3.317 Cond. No. 180.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.683
Model: OLS Adj. R-squared: 0.652
Method: Least Squares F-statistic: 21.57
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.02e-05
Time: 05:15:38 Log-Likelihood: -99.883
No. Observations: 23 AIC: 205.8
Df Residuals: 20 BIC: 209.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.9807 41.751 2.754 0.012 27.890 202.071
C(dose)[T.1] 49.5427 8.722 5.680 0.000 31.348 67.737
expression -10.0034 6.807 -1.470 0.157 -24.202 4.195
Omnibus: 0.940 Durbin-Watson: 1.726
Prob(Omnibus): 0.625 Jarque-Bera (JB): 0.125
Skew: 0.059 Prob(JB): 0.940
Kurtosis: 3.341 Cond. No. 61.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:38 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.172
Model: OLS Adj. R-squared: 0.133
Method: Least Squares F-statistic: 4.373
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0489
Time: 05:15:38 Log-Likelihood: -110.93
No. Observations: 23 AIC: 225.9
Df Residuals: 21 BIC: 228.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 206.1220 60.805 3.390 0.003 79.671 332.573
expression -21.4471 10.256 -2.091 0.049 -42.777 -0.118
Omnibus: 10.685 Durbin-Watson: 2.143
Prob(Omnibus): 0.005 Jarque-Bera (JB): 2.217
Skew: 0.085 Prob(JB): 0.330
Kurtosis: 1.489 Cond. No. 56.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.409 0.534 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.341
Method: Least Squares F-statistic: 3.413
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0566
Time: 05:15:38 Log-Likelihood: -70.365
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 83.5305 95.941 0.871 0.403 -127.634 294.695
C(dose)[T.1] 148.6722 170.272 0.873 0.401 -226.095 523.439
expression -2.6584 15.723 -0.169 0.869 -37.264 31.947
expression:C(dose)[T.1] -15.1582 26.732 -0.567 0.582 -73.995 43.679
Omnibus: 6.715 Durbin-Watson: 0.833
Prob(Omnibus): 0.035 Jarque-Bera (JB): 3.820
Skew: -1.186 Prob(JB): 0.148
Kurtosis: 3.700 Cond. No. 173.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.256
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0229
Time: 05:15:38 Log-Likelihood: -70.581
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 115.2911 75.659 1.524 0.153 -49.556 280.138
C(dose)[T.1] 52.5948 16.364 3.214 0.007 16.941 88.249
expression -7.9020 12.351 -0.640 0.534 -34.812 19.008
Omnibus: 3.940 Durbin-Watson: 0.933
Prob(Omnibus): 0.139 Jarque-Bera (JB): 2.390
Skew: -0.978 Prob(JB): 0.303
Kurtosis: 2.987 Cond. No. 63.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:38 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.008
Model: OLS Adj. R-squared: -0.068
Method: Least Squares F-statistic: 0.1059
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.750
Time: 05:15:38 Log-Likelihood: -75.239
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 155.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.3387 96.780 0.644 0.531 -146.743 271.420
expression 4.9835 15.311 0.325 0.750 -28.094 38.060
Omnibus: 0.607 Durbin-Watson: 1.551
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.585
Skew: 0.067 Prob(JB): 0.746
Kurtosis: 2.042 Cond. No. 61.9