AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.946 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.11
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000117
Time: 05:07:20 Log-Likelihood: -100.81
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.0901 51.622 1.474 0.157 -31.957 184.137
C(dose)[T.1] 12.9060 64.473 0.200 0.843 -122.037 147.849
expression -4.4004 10.307 -0.427 0.674 -25.973 17.173
expression:C(dose)[T.1] 9.0423 14.038 0.644 0.527 -20.340 38.425
Omnibus: 0.679 Durbin-Watson: 2.133
Prob(Omnibus): 0.712 Jarque-Bera (JB): 0.658
Skew: 0.044 Prob(JB): 0.720
Kurtosis: 2.176 Cond. No. 91.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.83e-05
Time: 05:07:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.8513 34.817 1.489 0.152 -20.775 124.478
C(dose)[T.1] 53.8000 11.056 4.866 0.000 30.738 76.862
expression 0.4740 6.895 0.069 0.946 -13.908 14.856
Omnibus: 0.294 Durbin-Watson: 1.871
Prob(Omnibus): 0.863 Jarque-Bera (JB): 0.468
Skew: 0.067 Prob(JB): 0.791
Kurtosis: 2.314 Cond. No. 39.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:07:20 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.234
Model: OLS Adj. R-squared: 0.197
Method: Least Squares F-statistic: 6.405
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0194
Time: 05:07:20 Log-Likelihood: -110.04
No. Observations: 23 AIC: 224.1
Df Residuals: 21 BIC: 226.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 169.6472 36.092 4.700 0.000 94.590 244.704
expression -19.9595 7.887 -2.531 0.019 -36.361 -3.558
Omnibus: 0.746 Durbin-Watson: 2.674
Prob(Omnibus): 0.689 Jarque-Bera (JB): 0.767
Skew: 0.253 Prob(JB): 0.681
Kurtosis: 2.262 Cond. No. 27.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.087 0.773 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 3.706
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0460
Time: 05:07:20 Log-Likelihood: -70.061
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -36.9844 192.476 -0.192 0.851 -460.621 386.652
C(dose)[T.1] 354.7556 286.838 1.237 0.242 -276.571 986.082
expression 16.1423 29.705 0.543 0.598 -49.237 81.521
expression:C(dose)[T.1] -43.7262 41.603 -1.051 0.316 -135.293 47.841
Omnibus: 1.392 Durbin-Watson: 0.873
Prob(Omnibus): 0.499 Jarque-Bera (JB): 1.150
Skew: -0.549 Prob(JB): 0.563
Kurtosis: 2.205 Cond. No. 348.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.453
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 4.963
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0269
Time: 05:07:20 Log-Likelihood: -70.779
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 107.2052 135.594 0.791 0.445 -188.228 402.638
C(dose)[T.1] 54.2626 23.283 2.331 0.038 3.534 104.991
expression -6.1495 20.888 -0.294 0.773 -51.660 39.361
Omnibus: 2.107 Durbin-Watson: 0.857
Prob(Omnibus): 0.349 Jarque-Bera (JB): 1.581
Skew: -0.741 Prob(JB): 0.454
Kurtosis: 2.423 Cond. No. 124.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:07:20 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.205
Model: OLS Adj. R-squared: 0.144
Method: Least Squares F-statistic: 3.352
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0901
Time: 05:07:20 Log-Likelihood: -73.579
No. Observations: 15 AIC: 151.2
Df Residuals: 13 BIC: 152.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -112.3956 112.908 -0.995 0.338 -356.319 131.527
expression 29.8309 16.293 1.831 0.090 -5.367 65.029
Omnibus: 0.278 Durbin-Watson: 1.111
Prob(Omnibus): 0.870 Jarque-Bera (JB): 0.345
Skew: -0.261 Prob(JB): 0.842
Kurtosis: 2.471 Cond. No. 88.1