AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.172 | 0.683 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 13.13 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.09e-05 |
Time: | 04:56:36 | Log-Likelihood: | -100.20 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 277.3013 | 211.951 | 1.308 | 0.206 | -166.316 720.919 |
C(dose)[T.1] | -321.9850 | 325.633 | -0.989 | 0.335 | -1003.544 359.574 |
expression | -24.0693 | 22.858 | -1.053 | 0.306 | -71.912 23.773 |
expression:C(dose)[T.1] | 41.0573 | 35.820 | 1.146 | 0.266 | -33.915 116.030 |
Omnibus: | 0.123 | Durbin-Watson: | 1.826 |
Prob(Omnibus): | 0.940 | Jarque-Bera (JB): | 0.317 |
Skew: | 0.120 | Prob(JB): | 0.854 |
Kurtosis: | 2.478 | Cond. No. | 865. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.74 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.60e-05 |
Time: | 04:56:36 | Log-Likelihood: | -100.96 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 122.3355 | 164.506 | 0.744 | 0.466 | -220.819 465.490 |
C(dose)[T.1] | 51.0748 | 10.298 | 4.959 | 0.000 | 29.593 72.557 |
expression | -7.3502 | 17.737 | -0.414 | 0.683 | -44.348 29.648 |
Omnibus: | 0.281 | Durbin-Watson: | 1.841 |
Prob(Omnibus): | 0.869 | Jarque-Bera (JB): | 0.459 |
Skew: | 0.036 | Prob(JB): | 0.795 |
Kurtosis: | 2.312 | Cond. No. | 349. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:56:36 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.224 |
Model: | OLS | Adj. R-squared: | 0.187 |
Method: | Least Squares | F-statistic: | 6.066 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0225 |
Time: | 04:56:37 | Log-Likelihood: | -110.19 |
No. Observations: | 23 | AIC: | 224.4 |
Df Residuals: | 21 | BIC: | 226.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 572.0905 | 200.016 | 2.860 | 0.009 | 156.135 988.046 |
expression | -53.9790 | 21.917 | -2.463 | 0.023 | -99.557 -8.401 |
Omnibus: | 2.229 | Durbin-Watson: | 1.903 |
Prob(Omnibus): | 0.328 | Jarque-Bera (JB): | 1.673 |
Skew: | 0.487 | Prob(JB): | 0.433 |
Kurtosis: | 2.107 | Cond. No. | 291. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
5.491 | 0.037 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.560 |
Method: | Least Squares | F-statistic: | 6.948 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00686 |
Time: | 04:56:37 | Log-Likelihood: | -67.328 |
No. Observations: | 15 | AIC: | 142.7 |
Df Residuals: | 11 | BIC: | 145.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 748.0322 | 405.209 | 1.846 | 0.092 | -143.826 1639.890 |
C(dose)[T.1] | 992.6383 | 933.452 | 1.063 | 0.310 | -1061.877 3047.153 |
expression | -72.6321 | 43.231 | -1.680 | 0.121 | -167.783 22.518 |
expression:C(dose)[T.1] | -102.6052 | 100.504 | -1.021 | 0.329 | -323.813 118.603 |
Omnibus: | 0.126 | Durbin-Watson: | 1.150 |
Prob(Omnibus): | 0.939 | Jarque-Bera (JB): | 0.347 |
Skew: | -0.020 | Prob(JB): | 0.841 |
Kurtosis: | 2.256 | Cond. No. | 1.60e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.622 |
Model: | OLS | Adj. R-squared: | 0.559 |
Method: | Least Squares | F-statistic: | 9.866 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00292 |
Time: | 04:56:37 | Log-Likelihood: | -68.007 |
No. Observations: | 15 | AIC: | 142.0 |
Df Residuals: | 12 | BIC: | 144.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 925.9237 | 366.473 | 2.527 | 0.027 | 127.447 1724.400 |
C(dose)[T.1] | 39.7721 | 13.643 | 2.915 | 0.013 | 10.046 69.498 |
expression | -91.6162 | 39.096 | -2.343 | 0.037 | -176.799 -6.434 |
Omnibus: | 1.444 | Durbin-Watson: | 1.262 |
Prob(Omnibus): | 0.486 | Jarque-Bera (JB): | 1.040 |
Skew: | -0.394 | Prob(JB): | 0.594 |
Kurtosis: | 1.979 | Cond. No. | 532. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:56:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.354 |
Model: | OLS | Adj. R-squared: | 0.304 |
Method: | Least Squares | F-statistic: | 7.124 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0193 |
Time: | 04:56:37 | Log-Likelihood: | -72.023 |
No. Observations: | 15 | AIC: | 148.0 |
Df Residuals: | 13 | BIC: | 149.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1260.1093 | 437.088 | 2.883 | 0.013 | 315.839 2204.380 |
expression | -125.2126 | 46.911 | -2.669 | 0.019 | -226.558 -23.867 |
Omnibus: | 2.702 | Durbin-Watson: | 2.290 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.295 |
Skew: | 0.354 | Prob(JB): | 0.523 |
Kurtosis: | 1.746 | Cond. No. | 504. |