AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.057 | 0.316 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.669 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 12.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.30e-05 |
Time: | 05:00:23 | Log-Likelihood: | -100.39 |
No. Observations: | 23 | AIC: | 208.8 |
Df Residuals: | 19 | BIC: | 213.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -49.7714 | 143.408 | -0.347 | 0.732 | -349.928 250.385 |
C(dose)[T.1] | -65.7673 | 318.335 | -0.207 | 0.839 | -732.049 600.515 |
expression | 10.8782 | 14.990 | 0.726 | 0.477 | -20.496 42.252 |
expression:C(dose)[T.1] | 11.8251 | 32.571 | 0.363 | 0.721 | -56.346 79.996 |
Omnibus: | 0.328 | Durbin-Watson: | 1.747 |
Prob(Omnibus): | 0.849 | Jarque-Bera (JB): | 0.484 |
Skew: | -0.201 | Prob(JB): | 0.785 |
Kurtosis: | 2.414 | Cond. No. | 834. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.633 |
Method: | Least Squares | F-statistic: | 20.00 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.69e-05 |
Time: | 05:00:23 | Log-Likelihood: | -100.47 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -73.7123 | 124.554 | -0.592 | 0.561 | -333.527 186.102 |
C(dose)[T.1] | 49.7568 | 9.229 | 5.391 | 0.000 | 30.505 69.008 |
expression | 13.3829 | 13.016 | 1.028 | 0.316 | -13.768 40.534 |
Omnibus: | 0.480 | Durbin-Watson: | 1.711 |
Prob(Omnibus): | 0.787 | Jarque-Bera (JB): | 0.590 |
Skew: | -0.159 | Prob(JB): | 0.745 |
Kurtosis: | 2.283 | Cond. No. | 286. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:00:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.182 |
Model: | OLS | Adj. R-squared: | 0.143 |
Method: | Least Squares | F-statistic: | 4.680 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0422 |
Time: | 05:00:23 | Log-Likelihood: | -110.79 |
No. Observations: | 23 | AIC: | 225.6 |
Df Residuals: | 21 | BIC: | 227.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -306.3841 | 178.595 | -1.716 | 0.101 | -677.792 65.024 |
expression | 39.8599 | 18.425 | 2.163 | 0.042 | 1.543 78.177 |
Omnibus: | 1.786 | Durbin-Watson: | 2.241 |
Prob(Omnibus): | 0.409 | Jarque-Bera (JB): | 1.010 |
Skew: | 0.003 | Prob(JB): | 0.604 |
Kurtosis: | 1.973 | Cond. No. | 268. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.842 | 0.048 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.612 |
Model: | OLS | Adj. R-squared: | 0.506 |
Method: | Least Squares | F-statistic: | 5.789 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0126 |
Time: | 05:00:23 | Log-Likelihood: | -68.195 |
No. Observations: | 15 | AIC: | 144.4 |
Df Residuals: | 11 | BIC: | 147.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -408.6159 | 267.938 | -1.525 | 0.155 | -998.343 181.111 |
C(dose)[T.1] | 184.2517 | 388.135 | 0.475 | 0.644 | -670.028 1038.531 |
expression | 49.7096 | 27.959 | 1.778 | 0.103 | -11.827 111.247 |
expression:C(dose)[T.1] | -15.0388 | 39.950 | -0.376 | 0.714 | -102.969 72.891 |
Omnibus: | 1.166 | Durbin-Watson: | 1.665 |
Prob(Omnibus): | 0.558 | Jarque-Bera (JB): | 0.767 |
Skew: | -0.526 | Prob(JB): | 0.681 |
Kurtosis: | 2.651 | Cond. No. | 733. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.607 |
Model: | OLS | Adj. R-squared: | 0.542 |
Method: | Least Squares | F-statistic: | 9.277 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00367 |
Time: | 05:00:23 | Log-Likelihood: | -68.291 |
No. Observations: | 15 | AIC: | 142.6 |
Df Residuals: | 12 | BIC: | 144.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -338.0785 | 184.541 | -1.832 | 0.092 | -740.160 64.003 |
C(dose)[T.1] | 38.2480 | 14.187 | 2.696 | 0.019 | 7.337 69.159 |
expression | 42.3439 | 19.244 | 2.200 | 0.048 | 0.416 84.272 |
Omnibus: | 0.984 | Durbin-Watson: | 1.550 |
Prob(Omnibus): | 0.611 | Jarque-Bera (JB): | 0.654 |
Skew: | -0.480 | Prob(JB): | 0.721 |
Kurtosis: | 2.645 | Cond. No. | 274. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:00:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.369 |
Model: | OLS | Adj. R-squared: | 0.321 |
Method: | Least Squares | F-statistic: | 7.614 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0162 |
Time: | 05:00:23 | Log-Likelihood: | -71.842 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 13 | BIC: | 149.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -494.4358 | 213.286 | -2.318 | 0.037 | -955.212 -33.659 |
expression | 60.5392 | 21.940 | 2.759 | 0.016 | 13.141 107.937 |
Omnibus: | 1.806 | Durbin-Watson: | 2.237 |
Prob(Omnibus): | 0.405 | Jarque-Bera (JB): | 1.427 |
Skew: | 0.643 | Prob(JB): | 0.490 |
Kurtosis: | 2.207 | Cond. No. | 260. |