AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.792 | 0.384 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 13.10 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 7.20e-05 |
Time: | 22:58:22 | Log-Likelihood: | -100.21 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 118.3936 | 341.345 | 0.347 | 0.733 | -596.049 832.836 |
C(dose)[T.1] | 509.8677 | 554.505 | 0.920 | 0.369 | -650.725 1670.460 |
expression | -6.4905 | 34.512 | -0.188 | 0.853 | -78.725 65.744 |
expression:C(dose)[T.1] | -46.0568 | 55.994 | -0.823 | 0.421 | -163.253 71.140 |
Omnibus: | 0.095 | Durbin-Watson: | 1.904 |
Prob(Omnibus): | 0.953 | Jarque-Bera (JB): | 0.043 |
Skew: | 0.030 | Prob(JB): | 0.979 |
Kurtosis: | 2.796 | Cond. No. | 1.58e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 19.62 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.92e-05 |
Time: | 22:58:22 | Log-Likelihood: | -100.62 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 20 | BIC: | 210.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 291.4179 | 266.642 | 1.093 | 0.287 | -264.787 847.623 |
C(dose)[T.1] | 53.8258 | 8.619 | 6.245 | 0.000 | 35.847 71.804 |
expression | -23.9870 | 26.957 | -0.890 | 0.384 | -80.217 32.243 |
Omnibus: | 0.050 | Durbin-Watson: | 1.950 |
Prob(Omnibus): | 0.975 | Jarque-Bera (JB): | 0.239 |
Skew: | 0.080 | Prob(JB): | 0.887 |
Kurtosis: | 2.527 | Cond. No. | 621. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:58:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.08648 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.772 |
Time: | 22:58:23 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 210.9832 | 446.423 | 0.473 | 0.641 | -717.404 1139.371 |
expression | -13.2607 | 45.093 | -0.294 | 0.772 | -107.036 80.515 |
Omnibus: | 3.759 | Durbin-Watson: | 2.544 |
Prob(Omnibus): | 0.153 | Jarque-Bera (JB): | 1.621 |
Skew: | 0.267 | Prob(JB): | 0.445 |
Kurtosis: | 1.814 | Cond. No. | 620. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.202 | 0.661 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.483 |
Model: | OLS | Adj. R-squared: | 0.342 |
Method: | Least Squares | F-statistic: | 3.421 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0563 |
Time: | 22:58:23 | Log-Likelihood: | -70.357 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -385.1432 | 555.250 | -0.694 | 0.502 | -1607.241 836.954 |
C(dose)[T.1] | 647.3345 | 830.770 | 0.779 | 0.452 | -1181.178 2475.847 |
expression | 45.9102 | 56.314 | 0.815 | 0.432 | -78.036 169.856 |
expression:C(dose)[T.1] | -60.3415 | 83.207 | -0.725 | 0.483 | -243.478 122.795 |
Omnibus: | 2.226 | Durbin-Watson: | 0.893 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.373 |
Skew: | -0.732 | Prob(JB): | 0.503 |
Kurtosis: | 2.768 | Cond. No. | 1.38e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.068 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0254 |
Time: | 22:58:23 | Log-Likelihood: | -70.708 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -112.6802 | 400.678 | -0.281 | 0.783 | -985.683 760.323 |
C(dose)[T.1] | 45.0107 | 18.173 | 2.477 | 0.029 | 5.415 84.607 |
expression | 18.2708 | 40.630 | 0.450 | 0.661 | -70.253 106.795 |
Omnibus: | 2.362 | Durbin-Watson: | 0.787 |
Prob(Omnibus): | 0.307 | Jarque-Bera (JB): | 1.738 |
Skew: | -0.789 | Prob(JB): | 0.419 |
Kurtosis: | 2.463 | Cond. No. | 520. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:58:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.181 |
Model: | OLS | Adj. R-squared: | 0.118 |
Method: | Least Squares | F-statistic: | 2.869 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.114 |
Time: | 22:58:23 | Log-Likelihood: | -73.804 |
No. Observations: | 15 | AIC: | 151.6 |
Df Residuals: | 13 | BIC: | 153.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -603.0402 | 411.424 | -1.466 | 0.166 | -1491.868 285.788 |
expression | 69.8107 | 41.215 | 1.694 | 0.114 | -19.228 158.850 |
Omnibus: | 2.780 | Durbin-Watson: | 1.690 |
Prob(Omnibus): | 0.249 | Jarque-Bera (JB): | 1.245 |
Skew: | 0.298 | Prob(JB): | 0.537 |
Kurtosis: | 1.720 | Cond. No. | 451. |