AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.068 | 0.314 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 13.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.45e-05 |
Time: | 05:07:13 | Log-Likelihood: | -100.26 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 73.0975 | 105.712 | 0.691 | 0.498 | -148.161 294.356 |
C(dose)[T.1] | -20.4796 | 115.994 | -0.177 | 0.862 | -263.258 222.299 |
expression | -5.3857 | 30.092 | -0.179 | 0.860 | -68.369 57.597 |
expression:C(dose)[T.1] | 18.9820 | 32.292 | 0.588 | 0.564 | -48.606 86.570 |
Omnibus: | 0.372 | Durbin-Watson: | 1.978 |
Prob(Omnibus): | 0.830 | Jarque-Bera (JB): | 0.519 |
Skew: | 0.108 | Prob(JB): | 0.772 |
Kurtosis: | 2.297 | Cond. No. | 168. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.667 |
Model: | OLS | Adj. R-squared: | 0.634 |
Method: | Least Squares | F-statistic: | 20.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.68e-05 |
Time: | 05:07:13 | Log-Likelihood: | -100.46 |
No. Observations: | 23 | AIC: | 206.9 |
Df Residuals: | 20 | BIC: | 210.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 15.2850 | 38.120 | 0.401 | 0.693 | -64.232 94.802 |
C(dose)[T.1] | 47.4267 | 10.282 | 4.613 | 0.000 | 25.980 68.874 |
expression | 11.0978 | 10.737 | 1.034 | 0.314 | -11.300 33.496 |
Omnibus: | 0.216 | Durbin-Watson: | 1.929 |
Prob(Omnibus): | 0.898 | Jarque-Bera (JB): | 0.393 |
Skew: | 0.165 | Prob(JB): | 0.822 |
Kurtosis: | 2.451 | Cond. No. | 36.9 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:07:13 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.312 |
Model: | OLS | Adj. R-squared: | 0.280 |
Method: | Least Squares | F-statistic: | 9.542 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00556 |
Time: | 05:07:13 | Log-Likelihood: | -108.80 |
No. Observations: | 23 | AIC: | 221.6 |
Df Residuals: | 21 | BIC: | 223.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -65.6656 | 47.444 | -1.384 | 0.181 | -164.331 32.999 |
expression | 38.6450 | 12.511 | 3.089 | 0.006 | 12.628 64.662 |
Omnibus: | 1.052 | Durbin-Watson: | 2.517 |
Prob(Omnibus): | 0.591 | Jarque-Bera (JB): | 0.931 |
Skew: | 0.280 | Prob(JB): | 0.628 |
Kurtosis: | 2.189 | Cond. No. | 32.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.704 | 0.126 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.574 |
Model: | OLS | Adj. R-squared: | 0.458 |
Method: | Least Squares | F-statistic: | 4.941 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0206 |
Time: | 05:07:13 | Log-Likelihood: | -68.900 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.6352 | 161.422 | 1.367 | 0.199 | -134.652 575.923 |
C(dose)[T.1] | 315.2334 | 318.771 | 0.989 | 0.344 | -386.376 1016.843 |
expression | -45.8442 | 48.199 | -0.951 | 0.362 | -151.930 60.241 |
expression:C(dose)[T.1] | -71.0799 | 90.513 | -0.785 | 0.449 | -270.297 128.137 |
Omnibus: | 0.466 | Durbin-Watson: | 1.085 |
Prob(Omnibus): | 0.792 | Jarque-Bera (JB): | 0.506 |
Skew: | -0.334 | Prob(JB): | 0.777 |
Kurtosis: | 2.397 | Cond. No. | 204. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.550 |
Model: | OLS | Adj. R-squared: | 0.475 |
Method: | Least Squares | F-statistic: | 7.337 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00829 |
Time: | 05:07:13 | Log-Likelihood: | -69.309 |
No. Observations: | 15 | AIC: | 144.6 |
Df Residuals: | 12 | BIC: | 146.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 287.9948 | 134.545 | 2.141 | 0.054 | -5.154 581.143 |
C(dose)[T.1] | 65.2811 | 17.259 | 3.782 | 0.003 | 27.677 102.886 |
expression | -66.0003 | 40.140 | -1.644 | 0.126 | -153.458 21.457 |
Omnibus: | 0.893 | Durbin-Watson: | 1.066 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.777 |
Skew: | -0.469 | Prob(JB): | 0.678 |
Kurtosis: | 2.396 | Cond. No. | 72.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:07:13 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1817 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.677 |
Time: | 05:07:13 | Log-Likelihood: | -75.196 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 24.0446 | 163.637 | 0.147 | 0.885 | -329.473 377.562 |
expression | 20.0532 | 47.043 | 0.426 | 0.677 | -81.576 121.683 |
Omnibus: | 0.240 | Durbin-Watson: | 1.529 |
Prob(Omnibus): | 0.887 | Jarque-Bera (JB): | 0.420 |
Skew: | -0.072 | Prob(JB): | 0.811 |
Kurtosis: | 2.193 | Cond. No. | 61.1 |