AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.074 0.788 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000116
Time: 03:32:50 Log-Likelihood: -100.81
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.4453 128.386 -0.128 0.899 -285.160 252.269
C(dose)[T.1] 195.8365 241.471 0.811 0.427 -309.568 701.242
expression 10.0878 18.310 0.551 0.588 -28.235 48.410
expression:C(dose)[T.1] -19.9062 33.401 -0.596 0.558 -89.814 50.002
Omnibus: 0.260 Durbin-Watson: 1.941
Prob(Omnibus): 0.878 Jarque-Bera (JB): 0.384
Skew: 0.211 Prob(JB): 0.825
Kurtosis: 2.528 Cond. No. 475.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.73e-05
Time: 03:32:51 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.4513 105.684 0.241 0.812 -195.001 245.903
C(dose)[T.1] 52.0496 9.947 5.233 0.000 31.301 72.798
expression 4.1059 15.065 0.273 0.788 -27.318 35.530
Omnibus: 0.250 Durbin-Watson: 1.894
Prob(Omnibus): 0.882 Jarque-Bera (JB): 0.440
Skew: 0.048 Prob(JB): 0.803
Kurtosis: 2.329 Cond. No. 177.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:51 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.172
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 4.352
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0493
Time: 03:32:51 Log-Likelihood: -110.94
No. Observations: 23 AIC: 225.9
Df Residuals: 21 BIC: 228.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -217.4725 142.610 -1.525 0.142 -514.046 79.101
expression 41.5427 19.914 2.086 0.049 0.130 82.955
Omnibus: 6.136 Durbin-Watson: 2.001
Prob(Omnibus): 0.047 Jarque-Bera (JB): 1.982
Skew: 0.269 Prob(JB): 0.371
Kurtosis: 1.667 Cond. No. 159.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.584 0.036 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.631
Model: OLS Adj. R-squared: 0.530
Method: Least Squares F-statistic: 6.268
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00973
Time: 03:32:51 Log-Likelihood: -67.824
No. Observations: 15 AIC: 143.6
Df Residuals: 11 BIC: 146.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -202.9031 170.783 -1.188 0.260 -578.793 172.987
C(dose)[T.1] 133.7449 202.709 0.660 0.523 -312.416 579.905
expression 39.2115 24.731 1.586 0.141 -15.221 93.644
expression:C(dose)[T.1] -13.3544 28.999 -0.461 0.654 -77.182 50.473
Omnibus: 13.424 Durbin-Watson: 0.935
Prob(Omnibus): 0.001 Jarque-Bera (JB): 9.885
Skew: -1.524 Prob(JB): 0.00714
Kurtosis: 5.555 Cond. No. 321.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.624
Model: OLS Adj. R-squared: 0.561
Method: Least Squares F-statistic: 9.950
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00283
Time: 03:32:51 Log-Likelihood: -67.968
No. Observations: 15 AIC: 141.9
Df Residuals: 12 BIC: 144.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -135.9438 86.589 -1.570 0.142 -324.605 52.717
C(dose)[T.1] 40.6178 13.500 3.009 0.011 11.204 70.032
expression 29.4991 12.484 2.363 0.036 2.299 56.699
Omnibus: 14.424 Durbin-Watson: 0.911
Prob(Omnibus): 0.001 Jarque-Bera (JB): 10.996
Skew: -1.627 Prob(JB): 0.00410
Kurtosis: 5.646 Cond. No. 96.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:51 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.340
Model: OLS Adj. R-squared: 0.289
Method: Least Squares F-statistic: 6.698
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0225
Time: 03:32:51 Log-Likelihood: -72.183
No. Observations: 15 AIC: 148.4
Df Residuals: 13 BIC: 149.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -185.4859 108.179 -1.715 0.110 -419.193 48.221
expression 39.6001 15.301 2.588 0.023 6.543 72.657
Omnibus: 1.465 Durbin-Watson: 2.138
Prob(Omnibus): 0.481 Jarque-Bera (JB): 0.835
Skew: -0.071 Prob(JB): 0.659
Kurtosis: 1.853 Cond. No. 94.5