AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.428 0.520 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.24
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000109
Time: 04:46:14 Log-Likelihood: -100.73
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.3273 43.478 1.526 0.144 -24.674 157.329
C(dose)[T.1] 81.1616 72.772 1.115 0.279 -71.151 233.474
expression -1.8072 6.419 -0.282 0.781 -15.242 11.628
expression:C(dose)[T.1] -4.0305 10.633 -0.379 0.709 -26.286 18.225
Omnibus: 0.118 Durbin-Watson: 2.047
Prob(Omnibus): 0.943 Jarque-Bera (JB): 0.267
Skew: 0.142 Prob(JB): 0.875
Kurtosis: 2.556 Cond. No. 140.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.10
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.29e-05
Time: 04:46:14 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.1767 34.105 2.234 0.037 5.034 147.319
C(dose)[T.1] 53.7841 8.704 6.179 0.000 35.627 71.941
expression -3.2760 5.007 -0.654 0.520 -13.720 7.168
Omnibus: 0.275 Durbin-Watson: 2.081
Prob(Omnibus): 0.872 Jarque-Bera (JB): 0.456
Skew: 0.051 Prob(JB): 0.796
Kurtosis: 2.318 Cond. No. 55.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:46:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.01042
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.920
Time: 04:46:14 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.4593 56.713 1.507 0.147 -32.481 203.400
expression -0.8480 8.308 -0.102 0.920 -18.125 16.429
Omnibus: 3.199 Durbin-Watson: 2.524
Prob(Omnibus): 0.202 Jarque-Bera (JB): 1.542
Skew: 0.285 Prob(JB): 0.462
Kurtosis: 1.867 Cond. No. 54.8

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.946 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.306
Method: Least Squares F-statistic: 3.060
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0734
Time: 04:46:14 Log-Likelihood: -70.749
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.8088 70.370 0.779 0.452 -100.074 209.691
C(dose)[T.1] 119.0498 202.684 0.587 0.569 -327.054 565.154
expression 2.1650 11.898 0.182 0.859 -24.021 28.351
expression:C(dose)[T.1] -11.9389 34.519 -0.346 0.736 -87.914 64.036
Omnibus: 1.974 Durbin-Watson: 0.795
Prob(Omnibus): 0.373 Jarque-Bera (JB): 1.484
Skew: -0.716 Prob(JB): 0.476
Kurtosis: 2.431 Cond. No. 176.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.357
Method: Least Squares F-statistic: 4.889
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0280
Time: 04:46:14 Log-Likelihood: -70.830
No. Observations: 15 AIC: 147.7
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 63.0760 63.712 0.990 0.342 -75.740 201.892
C(dose)[T.1] 49.1764 15.739 3.124 0.009 14.884 83.469
expression 0.7467 10.751 0.069 0.946 -22.678 24.171
Omnibus: 2.685 Durbin-Watson: 0.791
Prob(Omnibus): 0.261 Jarque-Bera (JB): 1.845
Skew: -0.838 Prob(JB): 0.398
Kurtosis: 2.622 Cond. No. 49.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:46:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.009613
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.923
Time: 04:46:14 Log-Likelihood: -75.295
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 85.6987 81.899 1.046 0.314 -91.233 262.630
expression 1.3636 13.908 0.098 0.923 -28.682 31.409
Omnibus: 0.722 Durbin-Watson: 1.598
Prob(Omnibus): 0.697 Jarque-Bera (JB): 0.624
Skew: 0.055 Prob(JB): 0.732
Kurtosis: 2.007 Cond. No. 48.8