AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.951 0.101 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.698
Model: OLS Adj. R-squared: 0.650
Method: Least Squares F-statistic: 14.64
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.53e-05
Time: 04:19:26 Log-Likelihood: -99.335
No. Observations: 23 AIC: 206.7
Df Residuals: 19 BIC: 211.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 161.3992 137.544 1.173 0.255 -126.484 449.283
C(dose)[T.1] 147.6507 188.095 0.785 0.442 -246.036 541.337
expression -16.3455 20.956 -0.780 0.445 -60.206 27.515
expression:C(dose)[T.1] -13.9832 28.482 -0.491 0.629 -73.597 45.630
Omnibus: 2.275 Durbin-Watson: 1.954
Prob(Omnibus): 0.321 Jarque-Bera (JB): 1.233
Skew: 0.203 Prob(JB): 0.540
Kurtosis: 1.941 Cond. No. 403.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.694
Model: OLS Adj. R-squared: 0.664
Method: Least Squares F-statistic: 22.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.15e-06
Time: 04:19:26 Log-Likelihood: -99.480
No. Observations: 23 AIC: 205.0
Df Residuals: 20 BIC: 208.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 211.0387 91.462 2.307 0.032 20.251 401.826
C(dose)[T.1] 55.3986 8.274 6.695 0.000 38.139 72.658
expression -23.9151 13.920 -1.718 0.101 -52.952 5.122
Omnibus: 3.731 Durbin-Watson: 2.032
Prob(Omnibus): 0.155 Jarque-Bera (JB): 1.530
Skew: 0.202 Prob(JB): 0.465
Kurtosis: 1.803 Cond. No. 152.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:19:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.009
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.1846
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.672
Time: 04:19:26 Log-Likelihood: -113.00
No. Observations: 23 AIC: 230.0
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 148.3354 159.857 0.928 0.364 -184.105 480.775
expression -10.3982 24.200 -0.430 0.672 -60.724 39.928
Omnibus: 3.028 Durbin-Watson: 2.551
Prob(Omnibus): 0.220 Jarque-Bera (JB): 1.498
Skew: 0.280 Prob(JB): 0.473
Kurtosis: 1.882 Cond. No. 150.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.260 0.619 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.327
Method: Least Squares F-statistic: 3.264
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0631
Time: 04:19:26 Log-Likelihood: -70.526
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 90.3748 177.026 0.511 0.620 -299.256 480.006
C(dose)[T.1] 197.2427 312.084 0.632 0.540 -489.650 884.136
expression -3.5182 27.083 -0.130 0.899 -63.127 56.090
expression:C(dose)[T.1] -21.7017 46.560 -0.466 0.650 -124.180 80.777
Omnibus: 2.447 Durbin-Watson: 0.954
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.653
Skew: -0.793 Prob(JB): 0.438
Kurtosis: 2.643 Cond. No. 330.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.460
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 5.121
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0247
Time: 04:19:26 Log-Likelihood: -70.672
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 138.2632 139.379 0.992 0.341 -165.417 441.943
C(dose)[T.1] 51.9984 16.513 3.149 0.008 16.020 87.977
expression -10.8608 21.299 -0.510 0.619 -57.267 35.546
Omnibus: 2.671 Durbin-Watson: 0.878
Prob(Omnibus): 0.263 Jarque-Bera (JB): 1.874
Skew: -0.840 Prob(JB): 0.392
Kurtosis: 2.578 Cond. No. 123.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:19:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.015
Model: OLS Adj. R-squared: -0.061
Method: Least Squares F-statistic: 0.1930
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.668
Time: 04:19:26 Log-Likelihood: -75.190
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.3616 173.968 0.100 0.922 -358.473 393.196
expression 11.4578 26.079 0.439 0.668 -44.882 67.797
Omnibus: 0.546 Durbin-Watson: 1.548
Prob(Omnibus): 0.761 Jarque-Bera (JB): 0.561
Skew: 0.058 Prob(JB): 0.756
Kurtosis: 2.060 Cond. No. 118.