AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.022 | 0.882 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000131 |
Time: | 04:06:46 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -47.6354 | 269.884 | -0.177 | 0.862 | -612.509 517.238 |
C(dose)[T.1] | 212.2397 | 401.900 | 0.528 | 0.604 | -628.947 1053.426 |
expression | 11.6392 | 30.836 | 0.377 | 0.710 | -52.900 76.179 |
expression:C(dose)[T.1] | -18.0167 | 45.368 | -0.397 | 0.696 | -112.972 76.939 |
Omnibus: | 0.472 | Durbin-Watson: | 1.985 |
Prob(Omnibus): | 0.790 | Jarque-Bera (JB): | 0.567 |
Skew: | 0.067 | Prob(JB): | 0.753 |
Kurtosis: | 2.242 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.53 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.80e-05 |
Time: | 04:06:46 | Log-Likelihood: | -101.05 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.1926 | 193.792 | 0.130 | 0.898 | -379.050 429.435 |
C(dose)[T.1] | 52.6840 | 9.789 | 5.382 | 0.000 | 32.264 73.104 |
expression | 3.3161 | 22.137 | 0.150 | 0.882 | -42.860 49.492 |
Omnibus: | 0.297 | Durbin-Watson: | 1.905 |
Prob(Omnibus): | 0.862 | Jarque-Bera (JB): | 0.468 |
Skew: | 0.017 | Prob(JB): | 0.791 |
Kurtosis: | 2.302 | Cond. No. | 397. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:06:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.142 |
Model: | OLS | Adj. R-squared: | 0.101 |
Method: | Least Squares | F-statistic: | 3.470 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0766 |
Time: | 04:06:46 | Log-Likelihood: | -111.35 |
No. Observations: | 23 | AIC: | 226.7 |
Df Residuals: | 21 | BIC: | 229.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -418.8627 | 267.750 | -1.564 | 0.133 | -975.678 137.953 |
expression | 56.3735 | 30.264 | 1.863 | 0.077 | -6.565 119.312 |
Omnibus: | 2.341 | Durbin-Watson: | 2.370 |
Prob(Omnibus): | 0.310 | Jarque-Bera (JB): | 1.181 |
Skew: | 0.122 | Prob(JB): | 0.554 |
Kurtosis: | 1.917 | Cond. No. | 359. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.213 | 0.652 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.508 |
Model: | OLS | Adj. R-squared: | 0.373 |
Method: | Least Squares | F-statistic: | 3.782 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0436 |
Time: | 04:06:46 | Log-Likelihood: | -69.984 |
No. Observations: | 15 | AIC: | 148.0 |
Df Residuals: | 11 | BIC: | 150.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -193.4281 | 248.832 | -0.777 | 0.453 | -741.104 354.248 |
C(dose)[T.1] | 434.6577 | 365.658 | 1.189 | 0.260 | -370.151 1239.466 |
expression | 30.9488 | 29.491 | 1.049 | 0.316 | -33.962 95.859 |
expression:C(dose)[T.1] | -46.0628 | 43.867 | -1.050 | 0.316 | -142.613 50.487 |
Omnibus: | 2.904 | Durbin-Watson: | 1.348 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.600 |
Skew: | -0.800 | Prob(JB): | 0.449 |
Kurtosis: | 3.002 | Cond. No. | 519. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.458 |
Model: | OLS | Adj. R-squared: | 0.368 |
Method: | Least Squares | F-statistic: | 5.078 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0252 |
Time: | 04:06:46 | Log-Likelihood: | -70.701 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -17.9470 | 185.151 | -0.097 | 0.924 | -421.356 385.462 |
C(dose)[T.1] | 51.0639 | 16.117 | 3.168 | 0.008 | 15.949 86.179 |
expression | 10.1292 | 21.925 | 0.462 | 0.652 | -37.642 57.900 |
Omnibus: | 2.354 | Durbin-Watson: | 0.928 |
Prob(Omnibus): | 0.308 | Jarque-Bera (JB): | 1.747 |
Skew: | -0.788 | Prob(JB): | 0.418 |
Kurtosis: | 2.440 | Cond. No. | 202. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:06:46 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.071 |
Method: | Least Squares | F-statistic: | 0.06967 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.796 |
Time: | 04:06:46 | Log-Likelihood: | -75.260 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 154.4315 | 230.429 | 0.670 | 0.514 | -343.381 652.244 |
expression | -7.2944 | 27.635 | -0.264 | 0.796 | -66.996 52.407 |
Omnibus: | 0.194 | Durbin-Watson: | 1.586 |
Prob(Omnibus): | 0.907 | Jarque-Bera (JB): | 0.392 |
Skew: | -0.055 | Prob(JB): | 0.822 |
Kurtosis: | 2.215 | Cond. No. | 192. |