AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.832 0.191 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.628
Method: Least Squares F-statistic: 13.40
Date: Thu, 03 Apr 2025 Prob (F-statistic): 6.23e-05
Time: 22:54:32 Log-Likelihood: -100.03
No. Observations: 23 AIC: 208.1
Df Residuals: 19 BIC: 212.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -26.4289 82.377 -0.321 0.752 -198.847 145.989
C(dose)[T.1] 22.2673 148.911 0.150 0.883 -289.406 333.941
expression 11.2330 11.445 0.981 0.339 -12.723 35.188
expression:C(dose)[T.1] 3.6337 20.072 0.181 0.858 -38.377 45.644
Omnibus: 0.441 Durbin-Watson: 2.068
Prob(Omnibus): 0.802 Jarque-Bera (JB): 0.365
Skew: -0.273 Prob(JB): 0.833
Kurtosis: 2.712 Cond. No. 314.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.679
Model: OLS Adj. R-squared: 0.646
Method: Least Squares F-statistic: 21.10
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.18e-05
Time: 22:54:32 Log-Likelihood: -100.05
No. Observations: 23 AIC: 206.1
Df Residuals: 20 BIC: 209.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.9106 66.098 -0.528 0.603 -172.789 102.968
C(dose)[T.1] 49.1743 8.940 5.501 0.000 30.527 67.822
expression 12.4145 9.172 1.354 0.191 -6.718 31.547
Omnibus: 0.405 Durbin-Watson: 2.090
Prob(Omnibus): 0.817 Jarque-Bera (JB): 0.387
Skew: -0.268 Prob(JB): 0.824
Kurtosis: 2.658 Cond. No. 118.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:54:32 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.192
Model: OLS Adj. R-squared: 0.154
Method: Least Squares F-statistic: 4.994
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0364
Time: 22:54:33 Log-Likelihood: -110.65
No. Observations: 23 AIC: 225.3
Df Residuals: 21 BIC: 227.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -138.7836 97.993 -1.416 0.171 -342.571 65.004
expression 29.7727 13.323 2.235 0.036 2.066 57.480
Omnibus: 0.669 Durbin-Watson: 2.451
Prob(Omnibus): 0.716 Jarque-Bera (JB): 0.654
Skew: 0.043 Prob(JB): 0.721
Kurtosis: 2.179 Cond. No. 113.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.608 0.229 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.524
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 4.038
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0367
Time: 22:54:33 Log-Likelihood: -69.731
No. Observations: 15 AIC: 147.5
Df Residuals: 11 BIC: 150.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 114.2735 133.791 0.854 0.411 -180.199 408.746
C(dose)[T.1] 136.9431 170.916 0.801 0.440 -239.240 513.126
expression -9.2238 26.252 -0.351 0.732 -67.004 48.556
expression:C(dose)[T.1] -15.9249 32.868 -0.485 0.638 -88.267 56.417
Omnibus: 1.234 Durbin-Watson: 0.564
Prob(Omnibus): 0.539 Jarque-Bera (JB): 0.831
Skew: -0.546 Prob(JB): 0.660
Kurtosis: 2.630 Cond. No. 173.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.514
Model: OLS Adj. R-squared: 0.433
Method: Least Squares F-statistic: 6.344
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0132
Time: 22:54:33 Log-Likelihood: -69.890
No. Observations: 15 AIC: 145.8
Df Residuals: 12 BIC: 147.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 165.8680 78.372 2.116 0.056 -4.889 336.625
C(dose)[T.1] 54.4904 15.359 3.548 0.004 21.027 87.954
expression -19.3828 15.284 -1.268 0.229 -52.685 13.919
Omnibus: 0.986 Durbin-Watson: 0.542
Prob(Omnibus): 0.611 Jarque-Bera (JB): 0.752
Skew: -0.495 Prob(JB): 0.687
Kurtosis: 2.529 Cond. No. 58.2

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:54:33 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.05269
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.822
Time: 22:54:33 Log-Likelihood: -75.270
No. Observations: 15 AIC: 154.5
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 117.9256 106.167 1.111 0.287 -111.434 347.286
expression -4.6434 20.229 -0.230 0.822 -48.345 39.058
Omnibus: 1.025 Durbin-Watson: 1.669
Prob(Omnibus): 0.599 Jarque-Bera (JB): 0.717
Skew: 0.049 Prob(JB): 0.699
Kurtosis: 1.933 Cond. No. 56.9