AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.455 0.508 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000116
Time: 06:27:02 Log-Likelihood: -100.80
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 86.4945 95.191 0.909 0.375 -112.742 285.731
C(dose)[T.1] 53.6157 111.550 0.481 0.636 -179.860 287.092
expression -5.3195 15.651 -0.340 0.738 -38.077 27.438
expression:C(dose)[T.1] -0.4394 18.693 -0.024 0.981 -39.565 38.686
Omnibus: 0.228 Durbin-Watson: 1.938
Prob(Omnibus): 0.892 Jarque-Bera (JB): 0.377
Skew: 0.191 Prob(JB): 0.828
Kurtosis: 2.502 Cond. No. 215.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 19.14
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.26e-05
Time: 06:27:02 Log-Likelihood: -100.80
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 88.3640 50.981 1.733 0.098 -17.981 194.710
C(dose)[T.1] 51.0033 9.336 5.463 0.000 31.528 70.478
expression -5.6275 8.341 -0.675 0.508 -23.028 11.772
Omnibus: 0.233 Durbin-Watson: 1.944
Prob(Omnibus): 0.890 Jarque-Bera (JB): 0.384
Skew: 0.190 Prob(JB): 0.825
Kurtosis: 2.494 Cond. No. 71.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 06:27:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.145
Model: OLS Adj. R-squared: 0.104
Method: Least Squares F-statistic: 3.557
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0732
Time: 06:27:02 Log-Likelihood: -111.31
No. Observations: 23 AIC: 226.6
Df Residuals: 21 BIC: 228.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 211.8861 70.395 3.010 0.007 65.491 358.281
expression -22.5120 11.936 -1.886 0.073 -47.335 2.311
Omnibus: 1.483 Durbin-Watson: 2.685
Prob(Omnibus): 0.476 Jarque-Bera (JB): 1.088
Skew: 0.519 Prob(JB): 0.580
Kurtosis: 2.757 Cond. No. 64.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.030 0.865 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.347
Method: Least Squares F-statistic: 3.477
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0541
Time: 06:27:02 Log-Likelihood: -70.299
No. Observations: 15 AIC: 148.6
Df Residuals: 11 BIC: 151.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 241.8709 236.643 1.022 0.329 -278.977 762.719
C(dose)[T.1] -177.3186 257.375 -0.689 0.505 -743.797 389.160
expression -26.7406 36.232 -0.738 0.476 -106.487 53.006
expression:C(dose)[T.1] 35.0955 39.666 0.885 0.395 -52.209 122.400
Omnibus: 2.315 Durbin-Watson: 0.968
Prob(Omnibus): 0.314 Jarque-Bera (JB): 1.565
Skew: -0.770 Prob(JB): 0.457
Kurtosis: 2.637 Cond. No. 326.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.912
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0276
Time: 06:27:02 Log-Likelihood: -70.814
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 50.8501 96.012 0.530 0.606 -158.343 260.043
C(dose)[T.1] 49.9356 16.284 3.066 0.010 14.455 85.416
expression 2.5414 14.612 0.174 0.865 -29.296 34.379
Omnibus: 2.450 Durbin-Watson: 0.838
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.717
Skew: -0.801 Prob(JB): 0.424
Kurtosis: 2.574 Cond. No. 80.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 06:27:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.019
Model: OLS Adj. R-squared: -0.056
Method: Least Squares F-statistic: 0.2557
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.622
Time: 06:27:02 Log-Likelihood: -75.154
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.9582 115.704 1.313 0.212 -98.005 401.921
expression -9.1533 18.100 -0.506 0.622 -48.255 29.949
Omnibus: 0.875 Durbin-Watson: 1.564
Prob(Omnibus): 0.646 Jarque-Bera (JB): 0.675
Skew: 0.062 Prob(JB): 0.714
Kurtosis: 1.969 Cond. No. 75.3