AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.005 0.945 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.594
Method: Least Squares F-statistic: 11.72
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.000142
Time: 01:25:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 210.1
Df Residuals: 19 BIC: 214.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 66.4241 156.362 0.425 0.676 -260.845 393.693
C(dose)[T.1] 44.0443 192.285 0.229 0.821 -358.414 446.502
expression -1.5981 20.440 -0.078 0.938 -44.379 41.183
expression:C(dose)[T.1] 1.1868 25.787 0.046 0.964 -52.787 55.161
Omnibus: 0.314 Durbin-Watson: 1.907
Prob(Omnibus): 0.855 Jarque-Bera (JB): 0.481
Skew: 0.070 Prob(JB): 0.786
Kurtosis: 2.305 Cond. No. 442.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.50
Date: Thu, 30 Jan 2025 Prob (F-statistic): 2.83e-05
Time: 01:25:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 60.7247 93.050 0.653 0.521 -133.373 254.823
C(dose)[T.1] 52.8786 10.935 4.836 0.000 30.069 75.688
expression -0.8525 12.147 -0.070 0.945 -26.192 24.487
Omnibus: 0.366 Durbin-Watson: 1.906
Prob(Omnibus): 0.833 Jarque-Bera (JB): 0.512
Skew: 0.075 Prob(JB): 0.774
Kurtosis: 2.285 Cond. No. 161.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 30 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 01:25:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.239
Model: OLS Adj. R-squared: 0.203
Method: Least Squares F-statistic: 6.592
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.0179
Time: 01:25:39 Log-Likelihood: -109.97
No. Observations: 23 AIC: 223.9
Df Residuals: 21 BIC: 226.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 345.2456 103.614 3.332 0.003 129.768 560.723
expression -35.9475 14.001 -2.567 0.018 -65.065 -6.830
Omnibus: 1.901 Durbin-Watson: 2.446
Prob(Omnibus): 0.387 Jarque-Bera (JB): 1.624
Skew: 0.539 Prob(JB): 0.444
Kurtosis: 2.271 Cond. No. 124.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.733 0.409 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.504
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 3.726
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.0454
Time: 01:25:39 Log-Likelihood: -70.041
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 150.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 357.5131 281.145 1.272 0.230 -261.284 976.310
C(dose)[T.1] -178.7619 321.664 -0.556 0.590 -886.740 529.217
expression -39.2849 38.043 -1.033 0.324 -123.017 44.447
expression:C(dose)[T.1] 31.1682 43.154 0.722 0.485 -63.813 126.149
Omnibus: 2.010 Durbin-Watson: 1.220
Prob(Omnibus): 0.366 Jarque-Bera (JB): 0.999
Skew: -0.632 Prob(JB): 0.607
Kurtosis: 2.981 Cond. No. 478.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.480
Model: OLS Adj. R-squared: 0.394
Method: Least Squares F-statistic: 5.549
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.0197
Time: 01:25:39 Log-Likelihood: -70.389
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 148.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.6487 130.416 1.370 0.196 -105.502 462.800
C(dose)[T.1] 53.2636 16.002 3.329 0.006 18.399 88.129
expression -15.0621 17.597 -0.856 0.409 -53.402 23.278
Omnibus: 2.592 Durbin-Watson: 1.158
Prob(Omnibus): 0.274 Jarque-Bera (JB): 1.159
Skew: -0.673 Prob(JB): 0.560
Kurtosis: 3.209 Cond. No. 132.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.00629
Time: 01:25:39 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.001
Model: OLS Adj. R-squared: -0.076
Method: Least Squares F-statistic: 0.01084
Date: Thu, 30 Jan 2025 Prob (F-statistic): 0.919
Time: 01:25:39 Log-Likelihood: -75.294
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.1209 168.852 0.451 0.660 -288.662 440.904
expression 2.3307 22.389 0.104 0.919 -46.037 50.699
Omnibus: 0.526 Durbin-Watson: 1.580
Prob(Omnibus): 0.769 Jarque-Bera (JB): 0.551
Skew: 0.024 Prob(JB): 0.759
Kurtosis: 2.063 Cond. No. 128.