AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.334 0.570 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.13
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.000115
Time: 11:47:45 Log-Likelihood: -100.80
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 207.1616 237.791 0.871 0.395 -290.540 704.863
C(dose)[T.1] -61.4415 334.825 -0.184 0.856 -762.239 639.356
expression -16.2574 25.266 -0.643 0.528 -69.140 36.626
expression:C(dose)[T.1] 12.2720 35.264 0.348 0.732 -61.536 86.080
Omnibus: 0.562 Durbin-Watson: 1.785
Prob(Omnibus): 0.755 Jarque-Bera (JB): 0.614
Skew: 0.087 Prob(JB): 0.736
Kurtosis: 2.219 Cond. No. 943.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 18.97
Date: Tue, 03 Dec 2024 Prob (F-statistic): 2.40e-05
Time: 11:47:45 Log-Likelihood: -100.87
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 147.8895 162.252 0.911 0.373 -190.563 486.342
C(dose)[T.1] 55.0341 9.180 5.995 0.000 35.885 74.183
expression -9.9574 17.234 -0.578 0.570 -45.907 25.992
Omnibus: 0.635 Durbin-Watson: 1.784
Prob(Omnibus): 0.728 Jarque-Bera (JB): 0.663
Skew: 0.141 Prob(JB): 0.718
Kurtosis: 2.217 Cond. No. 359.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 03 Dec 2024 Prob (F-statistic): 3.51e-06
Time: 11:47:45 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.035
Model: OLS Adj. R-squared: -0.011
Method: Least Squares F-statistic: 0.7512
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.396
Time: 11:47:45 Log-Likelihood: -112.70
No. Observations: 23 AIC: 229.4
Df Residuals: 21 BIC: 231.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -139.4723 252.993 -0.551 0.587 -665.601 386.656
expression 23.0976 26.649 0.867 0.396 -32.323 78.518
Omnibus: 2.464 Durbin-Watson: 2.316
Prob(Omnibus): 0.292 Jarque-Bera (JB): 1.304
Skew: 0.227 Prob(JB): 0.521
Kurtosis: 1.926 Cond. No. 342.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.029 0.868 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.440
Method: Least Squares F-statistic: 4.666
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0244
Time: 11:47:45 Log-Likelihood: -69.143
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -402.0635 392.137 -1.025 0.327 -1265.150 461.023
C(dose)[T.1] 879.5545 500.642 1.757 0.107 -222.351 1981.460
expression 52.6797 43.984 1.198 0.256 -44.127 149.487
expression:C(dose)[T.1] -92.3084 55.692 -1.657 0.126 -214.885 30.268
Omnibus: 0.013 Durbin-Watson: 1.138
Prob(Omnibus): 0.993 Jarque-Bera (JB): 0.195
Skew: 0.055 Prob(JB): 0.907
Kurtosis: 2.452 Cond. No. 877.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.911
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.0277
Time: 11:47:45 Log-Likelihood: -70.815
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 111.0660 257.615 0.431 0.674 -450.228 672.360
C(dose)[T.1] 50.1462 16.689 3.005 0.011 13.784 86.508
expression -4.8964 28.877 -0.170 0.868 -67.814 58.022
Omnibus: 2.447 Durbin-Watson: 0.860
Prob(Omnibus): 0.294 Jarque-Bera (JB): 1.724
Skew: -0.801 Prob(JB): 0.422
Kurtosis: 2.564 Cond. No. 301.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.00629
Time: 11:47:45 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.036
Model: OLS Adj. R-squared: -0.038
Method: Least Squares F-statistic: 0.4904
Date: Tue, 03 Dec 2024 Prob (F-statistic): 0.496
Time: 11:47:45 Log-Likelihood: -75.022
No. Observations: 15 AIC: 154.0
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -124.7552 312.070 -0.400 0.696 -798.942 549.431
expression 24.2270 34.597 0.700 0.496 -50.514 98.968
Omnibus: 2.719 Durbin-Watson: 1.454
Prob(Omnibus): 0.257 Jarque-Bera (JB): 1.104
Skew: 0.124 Prob(JB): 0.576
Kurtosis: 1.695 Cond. No. 286.