AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 1.275 | 0.272 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.671 | 
  | Model: | OLS | Adj. R-squared: | 0.619 | 
  | Method: | Least Squares | F-statistic: | 12.89 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 7.94e-05 | 
  | Time: | 00:36:52 | Log-Likelihood: | -100.34 | 
  | No. Observations: | 23 | AIC: | 208.7 | 
  | Df Residuals: | 19 | BIC: | 213.2 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -51.3340 | 184.938 | -0.278 | 0.784 | -438.414   335.746 | 
  | C(dose)[T.1] | 13.3976 | 239.597 | 0.056 | 0.956 | -488.085   514.880 | 
  | expression | 12.4488 | 21.802 | 0.571 | 0.575 | -33.183    58.081 | 
  | expression:C(dose)[T.1] | 4.5639 | 28.144 | 0.162 | 0.873 | -54.343    63.471 | 
  | Omnibus: | 0.828 | Durbin-Watson: | 1.763 | 
  | Prob(Omnibus): | 0.661 | Jarque-Bera (JB): | 0.719 | 
  | Skew: | -0.053 | Prob(JB): | 0.698 | 
  | Kurtosis: | 2.140 | Cond. No. | 644. | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.670 | 
  | Model: | OLS | Adj. R-squared: | 0.637 | 
  | Method: | Least Squares | F-statistic: | 20.31 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 1.53e-05 | 
  | Time: | 00:36:52 | Log-Likelihood: | -100.35 | 
  | No. Observations: | 23 | AIC: | 206.7 | 
  | Df Residuals: | 20 | BIC: | 210.1 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -74.5529 | 114.162 | -0.653 | 0.521 | -312.691   163.585 | 
  | C(dose)[T.1] | 52.2246 | 8.560 | 6.101 | 0.000 | 34.369    70.080 | 
  | expression | 15.1875 | 13.448 | 1.129 | 0.272 | -12.864    43.239 | 
  | Omnibus: | 0.729 | Durbin-Watson: | 1.714 | 
  | Prob(Omnibus): | 0.695 | Jarque-Bera (JB): | 0.685 | 
  | Skew: | -0.078 | Prob(JB): | 0.710 | 
  | Kurtosis: | 2.169 | Cond. No. | 233. | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 00:36:52 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.056 | 
  | Model: | OLS | Adj. R-squared: | 0.011 | 
  | Method: | Least Squares | F-statistic: | 1.248 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.277 | 
  | Time: | 00:36:52 | Log-Likelihood: | -112.44 | 
  | No. Observations: | 23 | AIC: | 228.9 | 
  | Df Residuals: | 21 | BIC: | 231.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -129.9570 | 187.856 | -0.692 | 0.497 | -520.625   260.711 | 
  | expression | 24.6295 | 22.051 | 1.117 | 0.277 | -21.228    70.488 | 
  | Omnibus: | 2.094 | Durbin-Watson: | 2.244 | 
  | Prob(Omnibus): | 0.351 | Jarque-Bera (JB): | 1.207 | 
  | Skew: | 0.221 | Prob(JB): | 0.547 | 
  | Kurtosis: | 1.969 | Cond. No. | 231. | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.058 | 0.813 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.480 | 
  | Model: | OLS | Adj. R-squared: | 0.338 | 
  | Method: | Least Squares | F-statistic: | 3.385 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0578 | 
  | Time: | 00:36:52 | Log-Likelihood: | -70.395 | 
  | No. Observations: | 15 | AIC: | 148.8 | 
  | Df Residuals: | 11 | BIC: | 151.6 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | -156.8483 | 288.711 | -0.543 | 0.598 | -792.296   478.600 | 
  | C(dose)[T.1] | 320.1727 | 348.397 | 0.919 | 0.378 | -446.644  1086.990 | 
  | expression | 28.3515 | 36.467 | 0.777 | 0.453 | -51.912   108.615 | 
  | expression:C(dose)[T.1] | -34.2745 | 44.041 | -0.778 | 0.453 | -131.209    62.660 | 
  | Omnibus: | 2.306 | Durbin-Watson: | 0.903 | 
  | Prob(Omnibus): | 0.316 | Jarque-Bera (JB): | 1.543 | 
  | Skew: | -0.766 | Prob(JB): | 0.462 | 
  | Kurtosis: | 2.653 | Cond. No. | 507. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.451 | 
  | Model: | OLS | Adj. R-squared: | 0.360 | 
  | Method: | Least Squares | F-statistic: | 4.938 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0273 | 
  | Time: | 00:36:52 | Log-Likelihood: | -70.797 | 
  | No. Observations: | 15 | AIC: | 147.6 | 
  | Df Residuals: | 12 | BIC: | 149.7 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 29.0418 | 159.483 | 0.182 | 0.859 | -318.441   376.525 | 
  | C(dose)[T.1] | 49.3237 | 15.710 | 3.140 | 0.009 | 15.094    83.554 | 
  | expression | 4.8526 | 20.108 | 0.241 | 0.813 | -38.960    48.665 | 
  | Omnibus: | 2.651 | Durbin-Watson: | 0.835 | 
  | Prob(Omnibus): | 0.266 | Jarque-Bera (JB): | 1.873 | 
  | Skew: | -0.837 | Prob(JB): | 0.392 | 
  | Kurtosis: | 2.562 | Cond. No. | 164. | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 00:36:52 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.001 | 
  | Model: | OLS | Adj. R-squared: | -0.076 | 
  | Method: | Least Squares | F-statistic: | 0.01100 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.918 | 
  | Time: | 00:36:52 | Log-Likelihood: | -75.294 | 
  | No. Observations: | 15 | AIC: | 154.6 | 
  | Df Residuals: | 13 | BIC: | 156.0 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 72.0805 | 206.027 | 0.350 | 0.732 | -373.014   517.175 | 
  | expression | 2.7336 | 26.059 | 0.105 | 0.918 | -53.563    59.030 | 
  | Omnibus: | 0.694 | Durbin-Watson: | 1.643 | 
  | Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.616 | 
  | Skew: | 0.065 | Prob(JB): | 0.735 | 
  | Kurtosis: | 2.016 | Cond. No. | 163. |