AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.275 | 0.272 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.671 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 12.89 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.94e-05 |
Time: | 04:33:49 | Log-Likelihood: | -100.34 |
No. Observations: | 23 | AIC: | 208.7 |
Df Residuals: | 19 | BIC: | 213.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -51.3340 | 184.938 | -0.278 | 0.784 | -438.414 335.746 |
C(dose)[T.1] | 13.3976 | 239.597 | 0.056 | 0.956 | -488.085 514.880 |
expression | 12.4488 | 21.802 | 0.571 | 0.575 | -33.183 58.081 |
expression:C(dose)[T.1] | 4.5639 | 28.144 | 0.162 | 0.873 | -54.343 63.471 |
Omnibus: | 0.828 | Durbin-Watson: | 1.763 |
Prob(Omnibus): | 0.661 | Jarque-Bera (JB): | 0.719 |
Skew: | -0.053 | Prob(JB): | 0.698 |
Kurtosis: | 2.140 | Cond. No. | 644. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.670 |
Model: | OLS | Adj. R-squared: | 0.637 |
Method: | Least Squares | F-statistic: | 20.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.53e-05 |
Time: | 04:33:49 | Log-Likelihood: | -100.35 |
No. Observations: | 23 | AIC: | 206.7 |
Df Residuals: | 20 | BIC: | 210.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -74.5529 | 114.162 | -0.653 | 0.521 | -312.691 163.585 |
C(dose)[T.1] | 52.2246 | 8.560 | 6.101 | 0.000 | 34.369 70.080 |
expression | 15.1875 | 13.448 | 1.129 | 0.272 | -12.864 43.239 |
Omnibus: | 0.729 | Durbin-Watson: | 1.714 |
Prob(Omnibus): | 0.695 | Jarque-Bera (JB): | 0.685 |
Skew: | -0.078 | Prob(JB): | 0.710 |
Kurtosis: | 2.169 | Cond. No. | 233. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:33:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.056 |
Model: | OLS | Adj. R-squared: | 0.011 |
Method: | Least Squares | F-statistic: | 1.248 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.277 |
Time: | 04:33:49 | Log-Likelihood: | -112.44 |
No. Observations: | 23 | AIC: | 228.9 |
Df Residuals: | 21 | BIC: | 231.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -129.9570 | 187.856 | -0.692 | 0.497 | -520.625 260.711 |
expression | 24.6295 | 22.051 | 1.117 | 0.277 | -21.228 70.488 |
Omnibus: | 2.094 | Durbin-Watson: | 2.244 |
Prob(Omnibus): | 0.351 | Jarque-Bera (JB): | 1.207 |
Skew: | 0.221 | Prob(JB): | 0.547 |
Kurtosis: | 1.969 | Cond. No. | 231. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.058 | 0.813 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.338 |
Method: | Least Squares | F-statistic: | 3.385 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0578 |
Time: | 04:33:49 | Log-Likelihood: | -70.395 |
No. Observations: | 15 | AIC: | 148.8 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -156.8483 | 288.711 | -0.543 | 0.598 | -792.296 478.600 |
C(dose)[T.1] | 320.1727 | 348.397 | 0.919 | 0.378 | -446.644 1086.990 |
expression | 28.3515 | 36.467 | 0.777 | 0.453 | -51.912 108.615 |
expression:C(dose)[T.1] | -34.2745 | 44.041 | -0.778 | 0.453 | -131.209 62.660 |
Omnibus: | 2.306 | Durbin-Watson: | 0.903 |
Prob(Omnibus): | 0.316 | Jarque-Bera (JB): | 1.543 |
Skew: | -0.766 | Prob(JB): | 0.462 |
Kurtosis: | 2.653 | Cond. No. | 507. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.938 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0273 |
Time: | 04:33:49 | Log-Likelihood: | -70.797 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 29.0418 | 159.483 | 0.182 | 0.859 | -318.441 376.525 |
C(dose)[T.1] | 49.3237 | 15.710 | 3.140 | 0.009 | 15.094 83.554 |
expression | 4.8526 | 20.108 | 0.241 | 0.813 | -38.960 48.665 |
Omnibus: | 2.651 | Durbin-Watson: | 0.835 |
Prob(Omnibus): | 0.266 | Jarque-Bera (JB): | 1.873 |
Skew: | -0.837 | Prob(JB): | 0.392 |
Kurtosis: | 2.562 | Cond. No. | 164. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:33:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.001 |
Model: | OLS | Adj. R-squared: | -0.076 |
Method: | Least Squares | F-statistic: | 0.01100 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.918 |
Time: | 04:33:49 | Log-Likelihood: | -75.294 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 72.0805 | 206.027 | 0.350 | 0.732 | -373.014 517.175 |
expression | 2.7336 | 26.059 | 0.105 | 0.918 | -53.563 59.030 |
Omnibus: | 0.694 | Durbin-Watson: | 1.643 |
Prob(Omnibus): | 0.707 | Jarque-Bera (JB): | 0.616 |
Skew: | 0.065 | Prob(JB): | 0.735 |
Kurtosis: | 2.016 | Cond. No. | 163. |