AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.088 | 0.770 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.674 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 13.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.14e-05 |
Time: | 04:23:23 | Log-Likelihood: | -100.20 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 213.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -90.7293 | 285.803 | -0.317 | 0.754 | -688.921 507.463 |
C(dose)[T.1] | 577.6311 | 447.456 | 1.291 | 0.212 | -358.905 1514.167 |
expression | 14.6190 | 28.821 | 0.507 | 0.618 | -45.704 74.942 |
expression:C(dose)[T.1] | -53.8673 | 45.815 | -1.176 | 0.254 | -149.759 42.025 |
Omnibus: | 0.664 | Durbin-Watson: | 1.983 |
Prob(Omnibus): | 0.718 | Jarque-Bera (JB): | 0.727 |
Skew: | -0.274 | Prob(JB): | 0.695 |
Kurtosis: | 2.323 | Cond. No. | 1.27e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.651 |
Model: | OLS | Adj. R-squared: | 0.616 |
Method: | Least Squares | F-statistic: | 18.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.71e-05 |
Time: | 04:23:23 | Log-Likelihood: | -101.01 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 120.6142 | 224.314 | 0.538 | 0.597 | -347.297 588.525 |
C(dose)[T.1] | 51.6710 | 10.403 | 4.967 | 0.000 | 29.970 73.372 |
expression | -6.6980 | 22.617 | -0.296 | 0.770 | -53.876 40.480 |
Omnibus: | 0.259 | Durbin-Watson: | 1.803 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.446 |
Skew: | 0.067 | Prob(JB): | 0.800 |
Kurtosis: | 2.331 | Cond. No. | 509. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:23:23 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.220 |
Model: | OLS | Adj. R-squared: | 0.182 |
Method: | Least Squares | F-statistic: | 5.909 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0241 |
Time: | 04:23:23 | Log-Likelihood: | -110.25 |
No. Observations: | 23 | AIC: | 224.5 |
Df Residuals: | 21 | BIC: | 226.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 740.4025 | 271.858 | 2.723 | 0.013 | 175.043 1305.762 |
expression | -67.4489 | 27.746 | -2.431 | 0.024 | -125.150 -9.748 |
Omnibus: | 13.012 | Durbin-Watson: | 1.819 |
Prob(Omnibus): | 0.001 | Jarque-Bera (JB): | 2.367 |
Skew: | 0.048 | Prob(JB): | 0.306 |
Kurtosis: | 1.431 | Cond. No. | 422. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.495 | 0.495 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.516 |
Model: | OLS | Adj. R-squared: | 0.384 |
Method: | Least Squares | F-statistic: | 3.909 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0400 |
Time: | 04:23:23 | Log-Likelihood: | -69.858 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 199.1551 | 324.187 | 0.614 | 0.551 | -514.376 912.686 |
C(dose)[T.1] | 1282.8610 | 1214.021 | 1.057 | 0.313 | -1389.181 3954.903 |
expression | -13.1710 | 32.395 | -0.407 | 0.692 | -84.472 58.130 |
expression:C(dose)[T.1] | -122.5856 | 120.745 | -1.015 | 0.332 | -388.344 143.173 |
Omnibus: | 0.858 | Durbin-Watson: | 0.688 |
Prob(Omnibus): | 0.651 | Jarque-Bera (JB): | 0.800 |
Skew: | -0.386 | Prob(JB): | 0.670 |
Kurtosis: | 2.173 | Cond. No. | 1.87e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.334 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0220 |
Time: | 04:23:23 | Log-Likelihood: | -70.530 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 287.4050 | 312.716 | 0.919 | 0.376 | -393.944 968.754 |
C(dose)[T.1] | 50.4368 | 15.525 | 3.249 | 0.007 | 16.611 84.262 |
expression | -21.9949 | 31.247 | -0.704 | 0.495 | -90.077 46.087 |
Omnibus: | 2.011 | Durbin-Watson: | 0.825 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.555 |
Skew: | -0.714 | Prob(JB): | 0.459 |
Kurtosis: | 2.329 | Cond. No. | 412. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:23:23 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.005 |
Model: | OLS | Adj. R-squared: | -0.072 |
Method: | Least Squares | F-statistic: | 0.06558 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.802 |
Time: | 04:23:23 | Log-Likelihood: | -75.262 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 198.7174 | 410.332 | 0.484 | 0.636 | -687.751 1085.185 |
expression | -10.4723 | 40.893 | -0.256 | 0.802 | -98.815 77.871 |
Omnibus: | 1.041 | Durbin-Watson: | 1.655 |
Prob(Omnibus): | 0.594 | Jarque-Bera (JB): | 0.728 |
Skew: | 0.086 | Prob(JB): | 0.695 |
Kurtosis: | 1.934 | Cond. No. | 410. |