AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.442 | 0.514 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.606 |
Method: | Least Squares | F-statistic: | 12.26 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000108 |
Time: | 04:00:53 | Log-Likelihood: | -100.72 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 214.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 168.1391 | 158.195 | 1.063 | 0.301 | -162.967 499.245 |
C(dose)[T.1] | -28.9336 | 206.634 | -0.140 | 0.890 | -461.424 403.556 |
expression | -16.6977 | 23.168 | -0.721 | 0.480 | -65.188 31.793 |
expression:C(dose)[T.1] | 11.9572 | 30.529 | 0.392 | 0.700 | -51.940 75.855 |
Omnibus: | 0.858 | Durbin-Watson: | 1.944 |
Prob(Omnibus): | 0.651 | Jarque-Bera (JB): | 0.726 |
Skew: | 0.012 | Prob(JB): | 0.696 |
Kurtosis: | 2.130 | Cond. No. | 432. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.12 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.28e-05 |
Time: | 04:00:53 | Log-Likelihood: | -100.81 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 121.1545 | 100.921 | 1.200 | 0.244 | -89.363 331.672 |
C(dose)[T.1] | 51.9193 | 8.933 | 5.812 | 0.000 | 33.285 70.553 |
expression | -9.8116 | 14.765 | -0.665 | 0.514 | -40.610 20.987 |
Omnibus: | 0.893 | Durbin-Watson: | 1.873 |
Prob(Omnibus): | 0.640 | Jarque-Bera (JB): | 0.757 |
Skew: | 0.102 | Prob(JB): | 0.685 |
Kurtosis: | 2.135 | Cond. No. | 161. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:00:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.077 |
Model: | OLS | Adj. R-squared: | 0.033 |
Method: | Least Squares | F-statistic: | 1.745 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.201 |
Time: | 04:00:53 | Log-Likelihood: | -112.19 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 284.4125 | 155.121 | 1.833 | 0.081 | -38.178 607.003 |
expression | -30.3070 | 22.944 | -1.321 | 0.201 | -78.022 17.408 |
Omnibus: | 1.268 | Durbin-Watson: | 2.311 |
Prob(Omnibus): | 0.530 | Jarque-Bera (JB): | 1.153 |
Skew: | 0.416 | Prob(JB): | 0.562 |
Kurtosis: | 2.284 | Cond. No. | 155. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.114 | 0.742 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.557 |
Method: | Least Squares | F-statistic: | 6.868 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00714 |
Time: | 04:00:53 | Log-Likelihood: | -67.385 |
No. Observations: | 15 | AIC: | 142.8 |
Df Residuals: | 11 | BIC: | 145.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -102.0763 | 175.402 | -0.582 | 0.572 | -488.134 283.981 |
C(dose)[T.1] | 862.9313 | 326.371 | 2.644 | 0.023 | 144.593 1581.270 |
expression | 23.8177 | 24.610 | 0.968 | 0.354 | -30.348 77.984 |
expression:C(dose)[T.1] | -117.3330 | 46.906 | -2.501 | 0.029 | -220.572 -14.094 |
Omnibus: | 1.739 | Durbin-Watson: | 1.062 |
Prob(Omnibus): | 0.419 | Jarque-Bera (JB): | 1.323 |
Skew: | -0.559 | Prob(JB): | 0.516 |
Kurtosis: | 2.070 | Cond. No. | 433. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 4.988 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0265 |
Time: | 04:00:53 | Log-Likelihood: | -70.762 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 127.7874 | 179.168 | 0.713 | 0.489 | -262.587 518.162 |
C(dose)[T.1] | 47.2650 | 16.678 | 2.834 | 0.015 | 10.928 83.602 |
expression | -8.4812 | 25.124 | -0.338 | 0.742 | -63.222 46.260 |
Omnibus: | 2.225 | Durbin-Watson: | 0.784 |
Prob(Omnibus): | 0.329 | Jarque-Bera (JB): | 1.701 |
Skew: | -0.756 | Prob(JB): | 0.427 |
Kurtosis: | 2.341 | Cond. No. | 164. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:00:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.088 |
Model: | OLS | Adj. R-squared: | 0.018 |
Method: | Least Squares | F-statistic: | 1.262 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.282 |
Time: | 04:00:53 | Log-Likelihood: | -74.605 |
No. Observations: | 15 | AIC: | 153.2 |
Df Residuals: | 13 | BIC: | 154.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 323.8732 | 205.155 | 1.579 | 0.138 | -119.337 767.083 |
expression | -32.9087 | 29.295 | -1.123 | 0.282 | -96.196 30.379 |
Omnibus: | 0.500 | Durbin-Watson: | 1.556 |
Prob(Omnibus): | 0.779 | Jarque-Bera (JB): | 0.559 |
Skew: | -0.331 | Prob(JB): | 0.756 |
Kurtosis: | 2.325 | Cond. No. | 151. |