AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.221 0.643 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.598
Method: Least Squares F-statistic: 11.91
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.000129
Time: 17:01:47 Log-Likelihood: -100.94
No. Observations: 23 AIC: 209.9
Df Residuals: 19 BIC: 214.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 38.8020 54.194 0.716 0.483 -74.628 152.232
C(dose)[T.1] 51.7685 72.185 0.717 0.482 -99.316 202.853
expression 2.4926 8.711 0.286 0.778 -15.739 20.724
expression:C(dose)[T.1] 0.3610 11.787 0.031 0.976 -24.310 25.032
Omnibus: 0.269 Durbin-Watson: 1.890
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.451
Skew: -0.023 Prob(JB): 0.798
Kurtosis: 2.315 Cond. No. 134.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.618
Method: Least Squares F-statistic: 18.81
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.54e-05
Time: 17:01:47 Log-Likelihood: -100.94
No. Observations: 23 AIC: 207.9
Df Residuals: 20 BIC: 211.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 37.5836 35.867 1.048 0.307 -37.233 112.401
C(dose)[T.1] 53.9618 8.822 6.116 0.000 35.559 72.365
expression 2.6897 5.720 0.470 0.643 -9.242 14.622
Omnibus: 0.277 Durbin-Watson: 1.892
Prob(Omnibus): 0.871 Jarque-Bera (JB): 0.457
Skew: -0.020 Prob(JB): 0.796
Kurtosis: 2.311 Cond. No. 51.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 17:01:47 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.004
Model: OLS Adj. R-squared: -0.044
Method: Least Squares F-statistic: 0.07605
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.785
Time: 17:01:47 Log-Likelihood: -113.06
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 95.3684 57.210 1.667 0.110 -23.605 214.342
expression -2.5785 9.350 -0.276 0.785 -22.023 16.866
Omnibus: 2.512 Durbin-Watson: 2.505
Prob(Omnibus): 0.285 Jarque-Bera (JB): 1.426
Skew: 0.308 Prob(JB): 0.490
Kurtosis: 1.948 Cond. No. 49.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.815 0.384 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.610
Model: OLS Adj. R-squared: 0.504
Method: Least Squares F-statistic: 5.737
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0130
Time: 17:01:47 Log-Likelihood: -68.236
No. Observations: 15 AIC: 144.5
Df Residuals: 11 BIC: 147.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -93.2080 175.629 -0.531 0.606 -479.765 293.349
C(dose)[T.1] 474.5986 223.212 2.126 0.057 -16.688 965.885
expression 25.9060 28.277 0.916 0.379 -36.331 88.143
expression:C(dose)[T.1] -66.6138 35.300 -1.887 0.086 -144.309 11.081
Omnibus: 1.738 Durbin-Watson: 0.890
Prob(Omnibus): 0.419 Jarque-Bera (JB): 0.873
Skew: -0.590 Prob(JB): 0.646
Kurtosis: 2.927 Cond. No. 300.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.484
Model: OLS Adj. R-squared: 0.398
Method: Least Squares F-statistic: 5.625
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0189
Time: 17:01:47 Log-Likelihood: -70.340
No. Observations: 15 AIC: 146.7
Df Residuals: 12 BIC: 148.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 171.8369 116.152 1.479 0.165 -81.236 424.910
C(dose)[T.1] 54.3031 16.247 3.342 0.006 18.905 89.701
expression -16.8380 18.646 -0.903 0.384 -57.464 23.788
Omnibus: 1.930 Durbin-Watson: 0.770
Prob(Omnibus): 0.381 Jarque-Bera (JB): 1.300
Skew: -0.697 Prob(JB): 0.522
Kurtosis: 2.631 Cond. No. 100.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 17:01:47 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.073
Method: Least Squares F-statistic: 0.04327
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.838
Time: 17:01:48 Log-Likelihood: -75.275
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 62.7787 148.828 0.422 0.680 -258.745 384.303
expression 4.8547 23.337 0.208 0.838 -45.562 55.271
Omnibus: 0.562 Durbin-Watson: 1.598
Prob(Omnibus): 0.755 Jarque-Bera (JB): 0.574
Skew: 0.108 Prob(JB): 0.750
Kurtosis: 2.066 Cond. No. 95.9