AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.749 | 0.201 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.681 |
Model: | OLS | Adj. R-squared: | 0.631 |
Method: | Least Squares | F-statistic: | 13.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.90e-05 |
Time: | 03:39:32 | Log-Likelihood: | -99.968 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -95.6487 | 129.079 | -0.741 | 0.468 | -365.813 174.516 |
C(dose)[T.1] | 126.7026 | 165.492 | 0.766 | 0.453 | -219.677 473.082 |
expression | 18.6637 | 16.059 | 1.162 | 0.260 | -14.948 52.275 |
expression:C(dose)[T.1] | -9.4702 | 20.305 | -0.466 | 0.646 | -51.969 33.028 |
Omnibus: | 0.770 | Durbin-Watson: | 1.920 |
Prob(Omnibus): | 0.681 | Jarque-Bera (JB): | 0.732 |
Skew: | 0.375 | Prob(JB): | 0.693 |
Kurtosis: | 2.551 | Cond. No. | 440. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.677 |
Model: | OLS | Adj. R-squared: | 0.645 |
Method: | Least Squares | F-statistic: | 20.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.23e-05 |
Time: | 03:39:32 | Log-Likelihood: | -100.10 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 20 | BIC: | 209.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -48.0853 | 77.566 | -0.620 | 0.542 | -209.885 113.715 |
C(dose)[T.1] | 49.6319 | 8.864 | 5.599 | 0.000 | 31.142 68.122 |
expression | 12.7400 | 9.633 | 1.323 | 0.201 | -7.354 32.834 |
Omnibus: | 1.006 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.605 | Jarque-Bera (JB): | 0.876 |
Skew: | 0.433 | Prob(JB): | 0.645 |
Kurtosis: | 2.593 | Cond. No. | 154. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:39:32 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.171 |
Model: | OLS | Adj. R-squared: | 0.132 |
Method: | Least Squares | F-statistic: | 4.344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0495 |
Time: | 03:39:32 | Log-Likelihood: | -110.94 |
No. Observations: | 23 | AIC: | 225.9 |
Df Residuals: | 21 | BIC: | 228.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -163.5991 | 116.924 | -1.399 | 0.176 | -406.755 79.557 |
expression | 29.7875 | 14.291 | 2.084 | 0.050 | 0.067 59.508 |
Omnibus: | 2.014 | Durbin-Watson: | 2.765 |
Prob(Omnibus): | 0.365 | Jarque-Bera (JB): | 1.681 |
Skew: | 0.623 | Prob(JB): | 0.432 |
Kurtosis: | 2.554 | Cond. No. | 148. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.024 | 0.108 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.587 |
Model: | OLS | Adj. R-squared: | 0.474 |
Method: | Least Squares | F-statistic: | 5.205 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0176 |
Time: | 03:39:32 | Log-Likelihood: | -68.673 |
No. Observations: | 15 | AIC: | 145.3 |
Df Residuals: | 11 | BIC: | 148.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1.8405 | 263.480 | -0.007 | 0.995 | -581.757 578.076 |
C(dose)[T.1] | -214.9919 | 316.845 | -0.679 | 0.511 | -912.362 482.379 |
expression | 8.5654 | 32.555 | 0.263 | 0.797 | -63.088 80.219 |
expression:C(dose)[T.1] | 33.3321 | 39.335 | 0.847 | 0.415 | -53.244 119.908 |
Omnibus: | 0.948 | Durbin-Watson: | 1.050 |
Prob(Omnibus): | 0.622 | Jarque-Bera (JB): | 0.857 |
Skew: | -0.412 | Prob(JB): | 0.652 |
Kurtosis: | 2.169 | Cond. No. | 525. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.560 |
Model: | OLS | Adj. R-squared: | 0.486 |
Method: | Least Squares | F-statistic: | 7.628 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00728 |
Time: | 03:39:32 | Log-Likelihood: | -69.148 |
No. Observations: | 15 | AIC: | 144.3 |
Df Residuals: | 12 | BIC: | 146.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -186.4840 | 146.381 | -1.274 | 0.227 | -505.421 132.453 |
C(dose)[T.1] | 53.2206 | 14.256 | 3.733 | 0.003 | 22.160 84.282 |
expression | 31.3974 | 18.056 | 1.739 | 0.108 | -7.943 70.738 |
Omnibus: | 2.888 | Durbin-Watson: | 1.301 |
Prob(Omnibus): | 0.236 | Jarque-Bera (JB): | 1.271 |
Skew: | -0.303 | Prob(JB): | 0.530 |
Kurtosis: | 1.710 | Cond. No. | 170. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:39:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.048 |
Model: | OLS | Adj. R-squared: | -0.025 |
Method: | Least Squares | F-statistic: | 0.6606 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.431 |
Time: | 03:39:32 | Log-Likelihood: | -74.928 |
No. Observations: | 15 | AIC: | 153.9 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -70.3543 | 202.040 | -0.348 | 0.733 | -506.836 366.128 |
expression | 20.4548 | 25.166 | 0.813 | 0.431 | -33.913 74.822 |
Omnibus: | 0.787 | Durbin-Watson: | 1.863 |
Prob(Omnibus): | 0.675 | Jarque-Bera (JB): | 0.645 |
Skew: | 0.050 | Prob(JB): | 0.724 |
Kurtosis: | 1.989 | Cond. No. | 166. |