AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.466 | 0.503 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.14 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000115 |
Time: | 22:53:52 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.4314 | 264.510 | -0.157 | 0.877 | -595.057 512.194 |
C(dose)[T.1] | 35.1028 | 333.415 | 0.105 | 0.917 | -662.743 732.948 |
expression | 10.6770 | 29.521 | 0.362 | 0.722 | -51.112 72.465 |
expression:C(dose)[T.1] | 2.0698 | 37.245 | 0.056 | 0.956 | -75.886 80.025 |
Omnibus: | 0.776 | Durbin-Watson: | 1.819 |
Prob(Omnibus): | 0.678 | Jarque-Bera (JB): | 0.694 |
Skew: | -0.010 | Prob(JB): | 0.707 |
Kurtosis: | 2.149 | Cond. No. | 934. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.16 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.25e-05 |
Time: | 22:53:52 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -53.0793 | 157.279 | -0.337 | 0.739 | -381.159 275.000 |
C(dose)[T.1] | 53.6250 | 8.680 | 6.178 | 0.000 | 35.519 71.730 |
expression | 11.9773 | 17.545 | 0.683 | 0.503 | -24.622 48.577 |
Omnibus: | 0.786 | Durbin-Watson: | 1.817 |
Prob(Omnibus): | 0.675 | Jarque-Bera (JB): | 0.698 |
Skew: | -0.013 | Prob(JB): | 0.705 |
Kurtosis: | 2.147 | Cond. No. | 330. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:53:52 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.045 |
Method: | Least Squares | F-statistic: | 0.05294 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.820 |
Time: | 22:53:52 | Log-Likelihood: | -113.08 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 19.6813 | 261.031 | 0.075 | 0.941 | -523.163 562.526 |
expression | 6.7109 | 29.167 | 0.230 | 0.820 | -53.945 67.367 |
Omnibus: | 3.560 | Durbin-Watson: | 2.473 |
Prob(Omnibus): | 0.169 | Jarque-Bera (JB): | 1.600 |
Skew: | 0.277 | Prob(JB): | 0.449 |
Kurtosis: | 1.833 | Cond. No. | 328. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.482 | 0.501 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.576 |
Model: | OLS | Adj. R-squared: | 0.460 |
Method: | Least Squares | F-statistic: | 4.977 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0202 |
Time: | 22:53:52 | Log-Likelihood: | -68.868 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 11 | BIC: | 148.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -884.4889 | 565.584 | -1.564 | 0.146 | -2129.332 360.354 |
C(dose)[T.1] | 1404.0312 | 820.047 | 1.712 | 0.115 | -400.881 3208.943 |
expression | 103.5360 | 61.506 | 1.683 | 0.120 | -31.837 238.909 |
expression:C(dose)[T.1] | -146.9316 | 88.724 | -1.656 | 0.126 | -342.211 48.348 |
Omnibus: | 7.432 | Durbin-Watson: | 1.294 |
Prob(Omnibus): | 0.024 | Jarque-Bera (JB): | 4.045 |
Skew: | -1.106 | Prob(JB): | 0.132 |
Kurtosis: | 4.256 | Cond. No. | 1.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.470 |
Model: | OLS | Adj. R-squared: | 0.382 |
Method: | Least Squares | F-statistic: | 5.322 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0222 |
Time: | 22:53:52 | Log-Likelihood: | -70.538 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -235.2983 | 436.292 | -0.539 | 0.600 | -1185.896 715.299 |
C(dose)[T.1] | 46.2112 | 16.021 | 2.884 | 0.014 | 11.304 81.118 |
expression | 32.9263 | 47.438 | 0.694 | 0.501 | -70.432 136.284 |
Omnibus: | 1.591 | Durbin-Watson: | 1.001 |
Prob(Omnibus): | 0.451 | Jarque-Bera (JB): | 1.235 |
Skew: | -0.637 | Prob(JB): | 0.539 |
Kurtosis: | 2.405 | Cond. No. | 531. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:53:52 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.103 |
Model: | OLS | Adj. R-squared: | 0.034 |
Method: | Least Squares | F-statistic: | 1.487 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.244 |
Time: | 22:53:52 | Log-Likelihood: | -74.488 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -550.1546 | 528.115 | -1.042 | 0.317 | -1691.077 590.768 |
expression | 69.6593 | 57.131 | 1.219 | 0.244 | -53.764 193.083 |
Omnibus: | 2.417 | Durbin-Watson: | 1.941 |
Prob(Omnibus): | 0.299 | Jarque-Bera (JB): | 1.694 |
Skew: | 0.650 | Prob(JB): | 0.429 |
Kurtosis: | 1.990 | Cond. No. | 513. |