AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.133 0.719 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.692
Model: OLS Adj. R-squared: 0.643
Method: Least Squares F-statistic: 14.21
Date: Thu, 21 Nov 2024 Prob (F-statistic): 4.28e-05
Time: 04:33:28 Log-Likelihood: -99.572
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 191.5012 98.026 1.954 0.066 -13.671 396.673
C(dose)[T.1] -155.2572 131.660 -1.179 0.253 -430.825 120.310
expression -15.3067 10.910 -1.403 0.177 -38.141 7.527
expression:C(dose)[T.1] 23.7442 15.056 1.577 0.131 -7.768 55.256
Omnibus: 0.026 Durbin-Watson: 1.514
Prob(Omnibus): 0.987 Jarque-Bera (JB): 0.197
Skew: 0.065 Prob(JB): 0.906
Kurtosis: 2.566 Cond. No. 363.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.617
Method: Least Squares F-statistic: 18.68
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.65e-05
Time: 04:33:28 Log-Likelihood: -100.99
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.6781 70.159 1.136 0.270 -66.672 226.028
C(dose)[T.1] 51.8636 9.631 5.385 0.000 31.774 71.953
expression -2.8396 7.793 -0.364 0.719 -19.095 13.416
Omnibus: 0.307 Durbin-Watson: 1.822
Prob(Omnibus): 0.858 Jarque-Bera (JB): 0.474
Skew: 0.007 Prob(JB): 0.789
Kurtosis: 2.296 Cond. No. 143.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:33:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.146
Model: OLS Adj. R-squared: 0.105
Method: Least Squares F-statistic: 3.587
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0721
Time: 04:33:28 Log-Likelihood: -111.29
No. Observations: 23 AIC: 226.6
Df Residuals: 21 BIC: 228.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 258.1566 94.457 2.733 0.012 61.721 454.592
expression -20.4602 10.804 -1.894 0.072 -42.928 2.007
Omnibus: 2.898 Durbin-Watson: 2.160
Prob(Omnibus): 0.235 Jarque-Bera (JB): 1.891
Skew: 0.492 Prob(JB): 0.388
Kurtosis: 1.998 Cond. No. 125.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.027 0.871 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.621
Model: OLS Adj. R-squared: 0.518
Method: Least Squares F-statistic: 6.020
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0111
Time: 04:33:28 Log-Likelihood: -68.014
No. Observations: 15 AIC: 144.0
Df Residuals: 11 BIC: 146.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2841.6953 1684.150 -1.687 0.120 -6548.484 865.094
C(dose)[T.1] 4612.2978 2044.814 2.256 0.045 111.692 9112.904
expression 226.2972 131.006 1.727 0.112 -62.044 514.639
expression:C(dose)[T.1] -355.4832 159.269 -2.232 0.047 -706.032 -4.934
Omnibus: 0.132 Durbin-Watson: 1.637
Prob(Omnibus): 0.936 Jarque-Bera (JB): 0.224
Skew: -0.176 Prob(JB): 0.894
Kurtosis: 2.515 Cond. No. 5.58e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.910
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 04:33:28 Log-Likelihood: -70.816
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 250.1581 1105.358 0.226 0.825 -2158.211 2658.527
C(dose)[T.1] 48.4536 16.351 2.963 0.012 12.827 84.080
expression -14.2143 85.980 -0.165 0.871 -201.548 173.120
Omnibus: 2.572 Durbin-Watson: 0.743
Prob(Omnibus): 0.276 Jarque-Bera (JB): 1.851
Skew: -0.826 Prob(JB): 0.396
Kurtosis: 2.517 Cond. No. 1.82e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:33:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.048
Model: OLS Adj. R-squared: -0.026
Method: Least Squares F-statistic: 0.6494
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.435
Time: 04:33:28 Log-Likelihood: -74.934
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 1174.1279 1340.789 0.876 0.397 -1722.470 4070.725
expression -84.2304 104.522 -0.806 0.435 -310.037 141.576
Omnibus: 0.202 Durbin-Watson: 1.427
Prob(Omnibus): 0.904 Jarque-Bera (JB): 0.255
Skew: -0.217 Prob(JB): 0.880
Kurtosis: 2.532 Cond. No. 1.74e+03