AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.722 0.406 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.654
Method: Least Squares F-statistic: 14.89
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.17e-05
Time: 18:09:46 Log-Likelihood: -99.199
No. Observations: 23 AIC: 206.4
Df Residuals: 19 BIC: 210.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -30.8653 157.403 -0.196 0.847 -360.313 298.583
C(dose)[T.1] 405.7733 219.636 1.847 0.080 -53.931 865.477
expression 10.6716 19.731 0.541 0.595 -30.627 51.970
expression:C(dose)[T.1] -43.8996 27.408 -1.602 0.126 -101.265 13.466
Omnibus: 1.493 Durbin-Watson: 1.793
Prob(Omnibus): 0.474 Jarque-Bera (JB): 1.208
Skew: 0.370 Prob(JB): 0.547
Kurtosis: 2.156 Cond. No. 564.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.52
Date: Tue, 28 Jan 2025 Prob (F-statistic): 1.99e-05
Time: 18:09:46 Log-Likelihood: -100.66
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.5141 113.524 1.326 0.200 -86.292 387.320
C(dose)[T.1] 54.2349 8.680 6.248 0.000 36.128 72.342
expression -12.0805 14.221 -0.850 0.406 -41.744 17.583
Omnibus: 0.514 Durbin-Watson: 1.991
Prob(Omnibus): 0.773 Jarque-Bera (JB): 0.615
Skew: 0.184 Prob(JB): 0.735
Kurtosis: 2.288 Cond. No. 215.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 18:09:46 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.002846
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.958
Time: 18:09:46 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.8272 189.647 0.474 0.641 -304.565 484.219
expression -1.2625 23.666 -0.053 0.958 -50.480 47.954
Omnibus: 3.323 Durbin-Watson: 2.491
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.560
Skew: 0.281 Prob(JB): 0.458
Kurtosis: 1.854 Cond. No. 214.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.678 0.426 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.543
Model: OLS Adj. R-squared: 0.418
Method: Least Squares F-statistic: 4.349
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0299
Time: 18:09:46 Log-Likelihood: -69.434
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -100.4819 128.619 -0.781 0.451 -383.569 182.606
C(dose)[T.1] 413.6470 297.363 1.391 0.192 -240.844 1068.138
expression 25.1636 19.205 1.310 0.217 -17.107 67.434
expression:C(dose)[T.1] -53.2305 42.809 -1.243 0.240 -147.453 40.992
Omnibus: 1.948 Durbin-Watson: 1.399
Prob(Omnibus): 0.378 Jarque-Bera (JB): 1.345
Skew: -0.705 Prob(JB): 0.510
Kurtosis: 2.594 Cond. No. 334.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.478
Model: OLS Adj. R-squared: 0.391
Method: Least Squares F-statistic: 5.500
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0202
Time: 18:09:47 Log-Likelihood: -70.421
No. Observations: 15 AIC: 146.8
Df Residuals: 12 BIC: 149.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -28.9931 117.642 -0.246 0.809 -285.314 227.328
C(dose)[T.1] 44.4309 16.370 2.714 0.019 8.763 80.099
expression 14.4500 17.550 0.823 0.426 -23.789 52.689
Omnibus: 3.516 Durbin-Watson: 1.178
Prob(Omnibus): 0.172 Jarque-Bera (JB): 2.118
Skew: -0.920 Prob(JB): 0.347
Kurtosis: 2.943 Cond. No. 108.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 18:09:47 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.158
Model: OLS Adj. R-squared: 0.093
Method: Least Squares F-statistic: 2.439
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.142
Time: 18:09:47 Log-Likelihood: -74.011
No. Observations: 15 AIC: 152.0
Df Residuals: 13 BIC: 153.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -120.6388 137.545 -0.877 0.396 -417.788 176.510
expression 31.2916 20.037 1.562 0.142 -11.996 74.580
Omnibus: 3.332 Durbin-Watson: 2.162
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.259
Skew: 0.215 Prob(JB): 0.533
Kurtosis: 1.647 Cond. No. 103.