AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.722 | 0.406 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.702 |
Model: | OLS | Adj. R-squared: | 0.654 |
Method: | Least Squares | F-statistic: | 14.89 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.17e-05 |
Time: | 18:09:46 | Log-Likelihood: | -99.199 |
No. Observations: | 23 | AIC: | 206.4 |
Df Residuals: | 19 | BIC: | 210.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -30.8653 | 157.403 | -0.196 | 0.847 | -360.313 298.583 |
C(dose)[T.1] | 405.7733 | 219.636 | 1.847 | 0.080 | -53.931 865.477 |
expression | 10.6716 | 19.731 | 0.541 | 0.595 | -30.627 51.970 |
expression:C(dose)[T.1] | -43.8996 | 27.408 | -1.602 | 0.126 | -101.265 13.466 |
Omnibus: | 1.493 | Durbin-Watson: | 1.793 |
Prob(Omnibus): | 0.474 | Jarque-Bera (JB): | 1.208 |
Skew: | 0.370 | Prob(JB): | 0.547 |
Kurtosis: | 2.156 | Cond. No. | 564. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.627 |
Method: | Least Squares | F-statistic: | 19.52 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 1.99e-05 |
Time: | 18:09:46 | Log-Likelihood: | -100.66 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 150.5141 | 113.524 | 1.326 | 0.200 | -86.292 387.320 |
C(dose)[T.1] | 54.2349 | 8.680 | 6.248 | 0.000 | 36.128 72.342 |
expression | -12.0805 | 14.221 | -0.850 | 0.406 | -41.744 17.583 |
Omnibus: | 0.514 | Durbin-Watson: | 1.991 |
Prob(Omnibus): | 0.773 | Jarque-Bera (JB): | 0.615 |
Skew: | 0.184 | Prob(JB): | 0.735 |
Kurtosis: | 2.288 | Cond. No. | 215. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 18:09:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.002846 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.958 |
Time: | 18:09:46 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.8272 | 189.647 | 0.474 | 0.641 | -304.565 484.219 |
expression | -1.2625 | 23.666 | -0.053 | 0.958 | -50.480 47.954 |
Omnibus: | 3.323 | Durbin-Watson: | 2.491 |
Prob(Omnibus): | 0.190 | Jarque-Bera (JB): | 1.560 |
Skew: | 0.281 | Prob(JB): | 0.458 |
Kurtosis: | 1.854 | Cond. No. | 214. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.678 | 0.426 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.543 |
Model: | OLS | Adj. R-squared: | 0.418 |
Method: | Least Squares | F-statistic: | 4.349 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0299 |
Time: | 18:09:46 | Log-Likelihood: | -69.434 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -100.4819 | 128.619 | -0.781 | 0.451 | -383.569 182.606 |
C(dose)[T.1] | 413.6470 | 297.363 | 1.391 | 0.192 | -240.844 1068.138 |
expression | 25.1636 | 19.205 | 1.310 | 0.217 | -17.107 67.434 |
expression:C(dose)[T.1] | -53.2305 | 42.809 | -1.243 | 0.240 | -147.453 40.992 |
Omnibus: | 1.948 | Durbin-Watson: | 1.399 |
Prob(Omnibus): | 0.378 | Jarque-Bera (JB): | 1.345 |
Skew: | -0.705 | Prob(JB): | 0.510 |
Kurtosis: | 2.594 | Cond. No. | 334. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.478 |
Model: | OLS | Adj. R-squared: | 0.391 |
Method: | Least Squares | F-statistic: | 5.500 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0202 |
Time: | 18:09:47 | Log-Likelihood: | -70.421 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 12 | BIC: | 149.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -28.9931 | 117.642 | -0.246 | 0.809 | -285.314 227.328 |
C(dose)[T.1] | 44.4309 | 16.370 | 2.714 | 0.019 | 8.763 80.099 |
expression | 14.4500 | 17.550 | 0.823 | 0.426 | -23.789 52.689 |
Omnibus: | 3.516 | Durbin-Watson: | 1.178 |
Prob(Omnibus): | 0.172 | Jarque-Bera (JB): | 2.118 |
Skew: | -0.920 | Prob(JB): | 0.347 |
Kurtosis: | 2.943 | Cond. No. | 108. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 18:09:47 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.158 |
Model: | OLS | Adj. R-squared: | 0.093 |
Method: | Least Squares | F-statistic: | 2.439 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.142 |
Time: | 18:09:47 | Log-Likelihood: | -74.011 |
No. Observations: | 15 | AIC: | 152.0 |
Df Residuals: | 13 | BIC: | 153.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -120.6388 | 137.545 | -0.877 | 0.396 | -417.788 176.510 |
expression | 31.2916 | 20.037 | 1.562 | 0.142 | -11.996 74.580 |
Omnibus: | 3.332 | Durbin-Watson: | 2.162 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.259 |
Skew: | 0.215 | Prob(JB): | 0.533 |
Kurtosis: | 1.647 | Cond. No. | 103. |