AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.901 0.354 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.725
Model: OLS Adj. R-squared: 0.682
Method: Least Squares F-statistic: 16.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.48e-05
Time: 05:03:18 Log-Likelihood: -98.260
No. Observations: 23 AIC: 204.5
Df Residuals: 19 BIC: 209.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -24.4221 38.669 -0.632 0.535 -105.357 56.513
C(dose)[T.1] 177.9939 59.997 2.967 0.008 52.420 303.568
expression 17.9356 8.730 2.054 0.054 -0.337 36.208
expression:C(dose)[T.1] -29.5388 14.417 -2.049 0.055 -59.714 0.637
Omnibus: 1.540 Durbin-Watson: 1.437
Prob(Omnibus): 0.463 Jarque-Bera (JB): 0.385
Skew: -0.005 Prob(JB): 0.825
Kurtosis: 3.633 Cond. No. 82.3

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 19.78
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.82e-05
Time: 05:03:18 Log-Likelihood: -100.56
No. Observations: 23 AIC: 207.1
Df Residuals: 20 BIC: 210.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 23.0652 33.336 0.692 0.497 -46.472 92.603
C(dose)[T.1] 56.3019 9.129 6.167 0.000 37.258 75.345
expression 7.1037 7.483 0.949 0.354 -8.504 22.712
Omnibus: 1.037 Durbin-Watson: 1.729
Prob(Omnibus): 0.595 Jarque-Bera (JB): 0.807
Skew: -0.097 Prob(JB): 0.668
Kurtosis: 2.103 Cond. No. 35.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:03:18 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.026
Model: OLS Adj. R-squared: -0.021
Method: Least Squares F-statistic: 0.5516
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.466
Time: 05:03:18 Log-Likelihood: -112.81
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 116.0420 49.425 2.348 0.029 13.256 218.828
expression -8.6809 11.688 -0.743 0.466 -32.988 15.626
Omnibus: 2.489 Durbin-Watson: 2.521
Prob(Omnibus): 0.288 Jarque-Bera (JB): 1.233
Skew: 0.148 Prob(JB): 0.540
Kurtosis: 1.905 Cond. No. 30.9

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.738 0.212 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.519
Model: OLS Adj. R-squared: 0.388
Method: Least Squares F-statistic: 3.962
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0386
Time: 05:03:18 Log-Likelihood: -69.806
No. Observations: 15 AIC: 147.6
Df Residuals: 11 BIC: 150.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -20.3953 99.550 -0.205 0.841 -239.503 198.713
C(dose)[T.1] 68.0179 125.626 0.541 0.599 -208.484 344.520
expression 16.6746 18.781 0.888 0.394 -24.661 58.011
expression:C(dose)[T.1] -3.2933 23.862 -0.138 0.893 -55.813 49.227
Omnibus: 3.117 Durbin-Watson: 1.074
Prob(Omnibus): 0.210 Jarque-Bera (JB): 1.749
Skew: -0.836 Prob(JB): 0.417
Kurtosis: 3.007 Cond. No. 125.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.518
Model: OLS Adj. R-squared: 0.438
Method: Least Squares F-statistic: 6.461
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0125
Time: 05:03:18 Log-Likelihood: -69.819
No. Observations: 15 AIC: 145.6
Df Residuals: 12 BIC: 147.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -9.6505 59.452 -0.162 0.874 -139.185 119.884
C(dose)[T.1] 50.8104 14.761 3.442 0.005 18.648 82.973
expression 14.6345 11.102 1.318 0.212 -9.554 38.824
Omnibus: 3.092 Durbin-Watson: 1.082
Prob(Omnibus): 0.213 Jarque-Bera (JB): 1.722
Skew: -0.830 Prob(JB): 0.423
Kurtosis: 3.015 Cond. No. 44.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:03:18 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.043
Model: OLS Adj. R-squared: -0.031
Method: Least Squares F-statistic: 0.5854
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.458
Time: 05:03:18 Log-Likelihood: -74.970
No. Observations: 15 AIC: 153.9
Df Residuals: 13 BIC: 155.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 33.9563 78.674 0.432 0.673 -136.008 203.920
expression 11.4649 14.985 0.765 0.458 -20.908 43.838
Omnibus: 0.328 Durbin-Watson: 1.896
Prob(Omnibus): 0.849 Jarque-Bera (JB): 0.470
Skew: 0.110 Prob(JB): 0.791
Kurtosis: 2.162 Cond. No. 43.0