AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.032 | 0.860 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 13.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 7.45e-05 |
Time: | 04:33:58 | Log-Likelihood: | -100.26 |
No. Observations: | 23 | AIC: | 208.5 |
Df Residuals: | 19 | BIC: | 213.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -26.4343 | 99.923 | -0.265 | 0.794 | -235.575 182.706 |
C(dose)[T.1] | 252.1958 | 171.065 | 1.474 | 0.157 | -105.848 610.240 |
expression | 10.3015 | 12.741 | 0.809 | 0.429 | -16.366 36.969 |
expression:C(dose)[T.1] | -25.9919 | 22.389 | -1.161 | 0.260 | -72.853 20.869 |
Omnibus: | 0.323 | Durbin-Watson: | 1.657 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.233 |
Skew: | -0.216 | Prob(JB): | 0.890 |
Kurtosis: | 2.763 | Cond. No. | 371. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.79e-05 |
Time: | 04:33:58 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 39.4613 | 82.947 | 0.476 | 0.639 | -133.564 212.486 |
C(dose)[T.1] | 53.8910 | 9.297 | 5.796 | 0.000 | 34.497 73.285 |
expression | 1.8838 | 10.568 | 0.178 | 0.860 | -20.160 23.927 |
Omnibus: | 0.411 | Durbin-Watson: | 1.819 |
Prob(Omnibus): | 0.814 | Jarque-Bera (JB): | 0.534 |
Skew: | 0.048 | Prob(JB): | 0.766 |
Kurtosis: | 2.260 | Cond. No. | 149. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:33:58 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.061 |
Model: | OLS | Adj. R-squared: | 0.016 |
Method: | Least Squares | F-statistic: | 1.364 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.256 |
Time: | 04:33:58 | Log-Likelihood: | -112.38 |
No. Observations: | 23 | AIC: | 228.8 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 222.5942 | 122.526 | 1.817 | 0.084 | -32.213 477.401 |
expression | -18.5852 | 15.912 | -1.168 | 0.256 | -51.676 14.506 |
Omnibus: | 3.588 | Durbin-Watson: | 2.760 |
Prob(Omnibus): | 0.166 | Jarque-Bera (JB): | 1.414 |
Skew: | 0.097 | Prob(JB): | 0.493 |
Kurtosis: | 1.801 | Cond. No. | 137. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.640 | 0.225 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.517 |
Model: | OLS | Adj. R-squared: | 0.385 |
Method: | Least Squares | F-statistic: | 3.920 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0397 |
Time: | 04:33:58 | Log-Likelihood: | -69.847 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -118.3441 | 163.691 | -0.723 | 0.485 | -478.626 241.938 |
C(dose)[T.1] | 105.2299 | 306.449 | 0.343 | 0.738 | -569.260 779.720 |
expression | 24.8100 | 21.809 | 1.138 | 0.279 | -23.192 72.812 |
expression:C(dose)[T.1] | -7.7759 | 40.382 | -0.193 | 0.851 | -96.657 81.105 |
Omnibus: | 1.189 | Durbin-Watson: | 0.999 |
Prob(Omnibus): | 0.552 | Jarque-Bera (JB): | 0.665 |
Skew: | -0.503 | Prob(JB): | 0.717 |
Kurtosis: | 2.775 | Cond. No. | 376. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.515 |
Model: | OLS | Adj. R-squared: | 0.434 |
Method: | Least Squares | F-statistic: | 6.372 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0130 |
Time: | 04:33:58 | Log-Likelihood: | -69.872 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -101.3610 | 132.251 | -0.766 | 0.458 | -389.510 186.788 |
C(dose)[T.1] | 46.2967 | 14.936 | 3.100 | 0.009 | 13.754 78.839 |
expression | 22.5419 | 17.603 | 1.281 | 0.225 | -15.812 60.896 |
Omnibus: | 0.940 | Durbin-Watson: | 1.050 |
Prob(Omnibus): | 0.625 | Jarque-Bera (JB): | 0.426 |
Skew: | -0.406 | Prob(JB): | 0.808 |
Kurtosis: | 2.855 | Cond. No. | 139. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:33:58 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.127 |
Model: | OLS | Adj. R-squared: | 0.060 |
Method: | Least Squares | F-statistic: | 1.887 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.193 |
Time: | 04:33:58 | Log-Likelihood: | -74.284 |
No. Observations: | 15 | AIC: | 152.6 |
Df Residuals: | 13 | BIC: | 154.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -139.1818 | 169.777 | -0.820 | 0.427 | -505.962 227.598 |
expression | 30.8147 | 22.433 | 1.374 | 0.193 | -17.648 79.278 |
Omnibus: | 1.016 | Durbin-Watson: | 1.817 |
Prob(Omnibus): | 0.602 | Jarque-Bera (JB): | 0.898 |
Skew: | 0.483 | Prob(JB): | 0.638 |
Kurtosis: | 2.290 | Cond. No. | 138. |