AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.273 | 0.607 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.599 |
Method: | Least Squares | F-statistic: | 11.98 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000125 |
Time: | 04:56:27 | Log-Likelihood: | -100.90 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 25.3831 | 119.453 | 0.212 | 0.834 | -224.635 275.401 |
C(dose)[T.1] | 34.6994 | 156.817 | 0.221 | 0.827 | -293.521 362.920 |
expression | 4.9959 | 20.675 | 0.242 | 0.812 | -38.278 48.270 |
expression:C(dose)[T.1] | 3.6740 | 27.758 | 0.132 | 0.896 | -54.424 61.772 |
Omnibus: | 0.557 | Durbin-Watson: | 1.984 |
Prob(Omnibus): | 0.757 | Jarque-Bera (JB): | 0.645 |
Skew: | 0.203 | Prob(JB): | 0.724 |
Kurtosis: | 2.288 | Cond. No. | 272. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.47e-05 |
Time: | 04:56:28 | Log-Likelihood: | -100.91 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 13.6225 | 77.851 | 0.175 | 0.863 | -148.771 176.016 |
C(dose)[T.1] | 55.4146 | 9.574 | 5.788 | 0.000 | 35.444 75.385 |
expression | 7.0342 | 13.452 | 0.523 | 0.607 | -21.027 35.095 |
Omnibus: | 0.540 | Durbin-Watson: | 1.998 |
Prob(Omnibus): | 0.763 | Jarque-Bera (JB): | 0.633 |
Skew: | 0.195 | Prob(JB): | 0.729 |
Kurtosis: | 2.287 | Cond. No. | 104. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:56:28 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.074 |
Model: | OLS | Adj. R-squared: | 0.030 |
Method: | Least Squares | F-statistic: | 1.674 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.210 |
Time: | 04:56:28 | Log-Likelihood: | -112.22 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 221.9963 | 110.179 | 2.015 | 0.057 | -7.133 451.126 |
expression | -25.2780 | 19.536 | -1.294 | 0.210 | -65.905 15.349 |
Omnibus: | 1.091 | Durbin-Watson: | 2.263 |
Prob(Omnibus): | 0.580 | Jarque-Bera (JB): | 0.888 |
Skew: | 0.208 | Prob(JB): | 0.641 |
Kurtosis: | 2.132 | Cond. No. | 92.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.006 | 0.939 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.300 |
Method: | Least Squares | F-statistic: | 3.000 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0769 |
Time: | 04:56:28 | Log-Likelihood: | -70.817 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.0145 | 218.552 | 0.316 | 0.758 | -412.015 550.044 |
C(dose)[T.1] | -4.2868 | 401.299 | -0.011 | 0.992 | -887.539 878.966 |
expression | -0.2489 | 34.251 | -0.007 | 0.994 | -75.636 75.138 |
expression:C(dose)[T.1] | 8.7655 | 64.964 | 0.135 | 0.895 | -134.219 151.750 |
Omnibus: | 2.419 | Durbin-Watson: | 0.842 |
Prob(Omnibus): | 0.298 | Jarque-Bera (JB): | 1.655 |
Skew: | -0.791 | Prob(JB): | 0.437 |
Kurtosis: | 2.620 | Cond. No. | 379. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.890 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:56:28 | Log-Likelihood: | -70.829 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 53.4902 | 178.051 | 0.300 | 0.769 | -334.450 441.431 |
C(dose)[T.1] | 49.8035 | 17.536 | 2.840 | 0.015 | 11.597 88.010 |
expression | 2.1877 | 27.888 | 0.078 | 0.939 | -58.575 62.951 |
Omnibus: | 2.757 | Durbin-Watson: | 0.831 |
Prob(Omnibus): | 0.252 | Jarque-Bera (JB): | 1.890 |
Skew: | -0.850 | Prob(JB): | 0.389 |
Kurtosis: | 2.631 | Cond. No. | 146. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:56:28 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.079 |
Model: | OLS | Adj. R-squared: | 0.008 |
Method: | Least Squares | F-statistic: | 1.111 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.311 |
Time: | 04:56:28 | Log-Likelihood: | -74.685 |
No. Observations: | 15 | AIC: | 153.4 |
Df Residuals: | 13 | BIC: | 154.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 297.5787 | 193.737 | 1.536 | 0.149 | -120.964 716.121 |
expression | -32.7664 | 31.092 | -1.054 | 0.311 | -99.936 34.404 |
Omnibus: | 3.724 | Durbin-Watson: | 1.345 |
Prob(Omnibus): | 0.155 | Jarque-Bera (JB): | 1.239 |
Skew: | 0.073 | Prob(JB): | 0.538 |
Kurtosis: | 1.599 | Cond. No. | 127. |