AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.853 | 0.367 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.672 |
| Model: | OLS | Adj. R-squared: | 0.620 |
| Method: | Least Squares | F-statistic: | 12.97 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 7.64e-05 |
| Time: | 19:46:54 | Log-Likelihood: | -100.29 |
| No. Observations: | 23 | AIC: | 208.6 |
| Df Residuals: | 19 | BIC: | 213.1 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 207.0086 | 133.241 | 1.554 | 0.137 | -71.868 485.885 |
| C(dose)[T.1] | -113.5160 | 237.200 | -0.479 | 0.638 | -609.982 382.950 |
| expression | -20.3413 | 17.719 | -1.148 | 0.265 | -57.428 16.746 |
| expression:C(dose)[T.1] | 22.2252 | 31.708 | 0.701 | 0.492 | -44.141 88.591 |
| Omnibus: | 0.337 | Durbin-Watson: | 2.003 |
| Prob(Omnibus): | 0.845 | Jarque-Bera (JB): | 0.494 |
| Skew: | -0.063 | Prob(JB): | 0.781 |
| Kurtosis: | 2.293 | Cond. No. | 499. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.663 |
| Model: | OLS | Adj. R-squared: | 0.630 |
| Method: | Least Squares | F-statistic: | 19.71 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 1.87e-05 |
| Time: | 19:46:54 | Log-Likelihood: | -100.58 |
| No. Observations: | 23 | AIC: | 207.2 |
| Df Residuals: | 20 | BIC: | 210.6 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 154.8719 | 109.131 | 1.419 | 0.171 | -72.772 382.516 |
| C(dose)[T.1] | 52.6314 | 8.622 | 6.104 | 0.000 | 34.645 70.618 |
| expression | -13.4007 | 14.506 | -0.924 | 0.367 | -43.660 16.859 |
| Omnibus: | 0.269 | Durbin-Watson: | 1.924 |
| Prob(Omnibus): | 0.874 | Jarque-Bera (JB): | 0.453 |
| Skew: | 0.116 | Prob(JB): | 0.797 |
| Kurtosis: | 2.353 | Cond. No. | 194. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 19:46:54 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.036 |
| Model: | OLS | Adj. R-squared: | -0.010 |
| Method: | Least Squares | F-statistic: | 0.7929 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.383 |
| Time: | 19:46:54 | Log-Likelihood: | -112.68 |
| No. Observations: | 23 | AIC: | 229.4 |
| Df Residuals: | 21 | BIC: | 231.6 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 238.7753 | 178.767 | 1.336 | 0.196 | -132.992 610.542 |
| expression | -21.2455 | 23.859 | -0.890 | 0.383 | -70.864 28.373 |
| Omnibus: | 1.891 | Durbin-Watson: | 2.402 |
| Prob(Omnibus): | 0.388 | Jarque-Bera (JB): | 1.415 |
| Skew: | 0.410 | Prob(JB): | 0.493 |
| Kurtosis: | 2.103 | Cond. No. | 192. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.328 | 0.577 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.518 |
| Model: | OLS | Adj. R-squared: | 0.386 |
| Method: | Least Squares | F-statistic: | 3.934 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0393 |
| Time: | 19:46:54 | Log-Likelihood: | -69.833 |
| No. Observations: | 15 | AIC: | 147.7 |
| Df Residuals: | 11 | BIC: | 150.5 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -122.2196 | 218.957 | -0.558 | 0.588 | -604.142 359.702 |
| C(dose)[T.1] | 878.9090 | 741.144 | 1.186 | 0.261 | -752.338 2510.156 |
| expression | 23.8895 | 27.545 | 0.867 | 0.404 | -36.737 84.516 |
| expression:C(dose)[T.1] | -108.9724 | 98.060 | -1.111 | 0.290 | -324.800 106.855 |
| Omnibus: | 2.890 | Durbin-Watson: | 1.019 |
| Prob(Omnibus): | 0.236 | Jarque-Bera (JB): | 1.697 |
| Skew: | -0.823 | Prob(JB): | 0.428 |
| Kurtosis: | 2.906 | Cond. No. | 874. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.463 |
| Model: | OLS | Adj. R-squared: | 0.374 |
| Method: | Least Squares | F-statistic: | 5.182 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0239 |
| Time: | 19:46:54 | Log-Likelihood: | -70.631 |
| No. Observations: | 15 | AIC: | 147.3 |
| Df Residuals: | 12 | BIC: | 149.4 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -53.9591 | 212.213 | -0.254 | 0.804 | -516.331 408.412 |
| C(dose)[T.1] | 55.5532 | 19.086 | 2.911 | 0.013 | 13.968 97.139 |
| expression | 15.2909 | 26.694 | 0.573 | 0.577 | -42.870 73.451 |
| Omnibus: | 2.577 | Durbin-Watson: | 0.971 |
| Prob(Omnibus): | 0.276 | Jarque-Bera (JB): | 1.734 |
| Skew: | -0.815 | Prob(JB): | 0.420 |
| Kurtosis: | 2.657 | Cond. No. | 216. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 19:46:55 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.085 |
| Model: | OLS | Adj. R-squared: | 0.014 |
| Method: | Least Squares | F-statistic: | 1.202 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.293 |
| Time: | 19:46:55 | Log-Likelihood: | -74.637 |
| No. Observations: | 15 | AIC: | 153.3 |
| Df Residuals: | 13 | BIC: | 154.7 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 324.2656 | 210.538 | 1.540 | 0.147 | -130.573 779.105 |
| expression | -29.8826 | 27.254 | -1.096 | 0.293 | -88.761 28.996 |
| Omnibus: | 0.729 | Durbin-Watson: | 1.357 |
| Prob(Omnibus): | 0.694 | Jarque-Bera (JB): | 0.722 |
| Skew: | -0.359 | Prob(JB): | 0.697 |
| Kurtosis: | 2.200 | Cond. No. | 170. |