AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.008 | 0.931 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.78 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000138 |
Time: | 22:58:21 | Log-Likelihood: | -101.02 |
No. Observations: | 23 | AIC: | 210.0 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.3527 | 257.806 | -0.029 | 0.978 | -546.947 532.242 |
C(dose)[T.1] | 149.9446 | 381.230 | 0.393 | 0.698 | -647.979 947.868 |
expression | 6.7661 | 28.327 | 0.239 | 0.814 | -52.523 66.055 |
expression:C(dose)[T.1] | -10.4500 | 40.907 | -0.255 | 0.801 | -96.070 75.170 |
Omnibus: | 0.112 | Durbin-Watson: | 1.876 |
Prob(Omnibus): | 0.946 | Jarque-Bera (JB): | 0.336 |
Skew: | 0.021 | Prob(JB): | 0.845 |
Kurtosis: | 2.410 | Cond. No. | 1.03e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.51 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.82e-05 |
Time: | 22:58:21 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 38.2388 | 181.643 | 0.211 | 0.835 | -340.662 417.140 |
C(dose)[T.1] | 52.6085 | 12.062 | 4.362 | 0.000 | 27.448 77.769 |
expression | 1.7552 | 19.953 | 0.088 | 0.931 | -39.866 43.377 |
Omnibus: | 0.353 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.505 |
Skew: | 0.083 | Prob(JB): | 0.777 |
Kurtosis: | 2.293 | Cond. No. | 391. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:58:22 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.316 |
Model: | OLS | Adj. R-squared: | 0.283 |
Method: | Least Squares | F-statistic: | 9.680 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00528 |
Time: | 22:58:22 | Log-Likelihood: | -108.75 |
No. Observations: | 23 | AIC: | 221.5 |
Df Residuals: | 21 | BIC: | 223.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -492.2071 | 183.916 | -2.676 | 0.014 | -874.682 -109.732 |
expression | 61.5175 | 19.772 | 3.111 | 0.005 | 20.399 102.636 |
Omnibus: | 1.851 | Durbin-Watson: | 2.413 |
Prob(Omnibus): | 0.396 | Jarque-Bera (JB): | 1.605 |
Skew: | 0.583 | Prob(JB): | 0.448 |
Kurtosis: | 2.440 | Cond. No. | 290. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.309 | 0.275 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.544 |
Model: | OLS | Adj. R-squared: | 0.419 |
Method: | Least Squares | F-statistic: | 4.366 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0296 |
Time: | 22:58:22 | Log-Likelihood: | -69.419 |
No. Observations: | 15 | AIC: | 146.8 |
Df Residuals: | 11 | BIC: | 149.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 145.8211 | 372.095 | 0.392 | 0.703 | -673.155 964.797 |
C(dose)[T.1] | -408.1686 | 450.239 | -0.907 | 0.384 | -1399.137 582.800 |
expression | -9.5671 | 45.391 | -0.211 | 0.837 | -109.473 90.339 |
expression:C(dose)[T.1] | 53.3677 | 54.013 | 0.988 | 0.344 | -65.514 172.249 |
Omnibus: | 0.972 | Durbin-Watson: | 0.742 |
Prob(Omnibus): | 0.615 | Jarque-Bera (JB): | 0.823 |
Skew: | -0.329 | Prob(JB): | 0.663 |
Kurtosis: | 2.060 | Cond. No. | 755. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.503 |
Model: | OLS | Adj. R-squared: | 0.420 |
Method: | Least Squares | F-statistic: | 6.072 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0151 |
Time: | 22:58:22 | Log-Likelihood: | -70.056 |
No. Observations: | 15 | AIC: | 146.1 |
Df Residuals: | 12 | BIC: | 148.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -163.0135 | 201.682 | -0.808 | 0.435 | -602.440 276.413 |
C(dose)[T.1] | 36.3074 | 18.715 | 1.940 | 0.076 | -4.468 77.083 |
expression | 28.1235 | 24.577 | 1.144 | 0.275 | -25.426 81.673 |
Omnibus: | 2.504 | Durbin-Watson: | 0.651 |
Prob(Omnibus): | 0.286 | Jarque-Bera (JB): | 1.916 |
Skew: | -0.790 | Prob(JB): | 0.384 |
Kurtosis: | 2.246 | Cond. No. | 233. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:58:22 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.347 |
Model: | OLS | Adj. R-squared: | 0.297 |
Method: | Least Squares | F-statistic: | 6.912 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0208 |
Time: | 22:58:22 | Log-Likelihood: | -72.102 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 13 | BIC: | 149.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -385.8158 | 182.565 | -2.113 | 0.054 | -780.224 8.592 |
expression | 56.8217 | 21.613 | 2.629 | 0.021 | 10.129 103.514 |
Omnibus: | 2.193 | Durbin-Watson: | 1.089 |
Prob(Omnibus): | 0.334 | Jarque-Bera (JB): | 0.568 |
Skew: | -0.366 | Prob(JB): | 0.753 |
Kurtosis: | 3.611 | Cond. No. | 190. |