AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
7.404 0.013 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.747
Model: OLS Adj. R-squared: 0.707
Method: Least Squares F-statistic: 18.69
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.80e-06
Time: 04:28:10 Log-Likelihood: -97.303
No. Observations: 23 AIC: 202.6
Df Residuals: 19 BIC: 207.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 253.9029 181.920 1.396 0.179 -126.860 634.666
C(dose)[T.1] 171.9275 222.756 0.772 0.450 -294.305 638.160
expression -28.4444 25.902 -1.098 0.286 -82.657 25.768
expression:C(dose)[T.1] -14.9662 31.269 -0.479 0.638 -80.412 50.480
Omnibus: 0.989 Durbin-Watson: 1.630
Prob(Omnibus): 0.610 Jarque-Bera (JB): 0.842
Skew: 0.428 Prob(JB): 0.656
Kurtosis: 2.620 Cond. No. 603.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.744
Model: OLS Adj. R-squared: 0.718
Method: Least Squares F-statistic: 29.04
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.21e-06
Time: 04:28:10 Log-Likelihood: -97.441
No. Observations: 23 AIC: 200.9
Df Residuals: 20 BIC: 204.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 326.0002 100.020 3.259 0.004 117.362 534.639
C(dose)[T.1] 65.3939 8.704 7.513 0.000 47.237 83.551
expression -38.7139 14.228 -2.721 0.013 -68.392 -9.035
Omnibus: 0.893 Durbin-Watson: 1.658
Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.893
Skew: 0.354 Prob(JB): 0.640
Kurtosis: 2.344 Cond. No. 196.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:28:10 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.021
Model: OLS Adj. R-squared: -0.026
Method: Least Squares F-statistic: 0.4515
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.509
Time: 04:28:10 Log-Likelihood: -112.86
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -32.8399 167.665 -0.196 0.847 -381.519 315.839
expression 15.6995 23.365 0.672 0.509 -32.890 64.289
Omnibus: 1.843 Durbin-Watson: 2.416
Prob(Omnibus): 0.398 Jarque-Bera (JB): 1.310
Skew: 0.354 Prob(JB): 0.520
Kurtosis: 2.069 Cond. No. 172.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.058 0.813 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.458
Model: OLS Adj. R-squared: 0.311
Method: Least Squares F-statistic: 3.103
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0711
Time: 04:28:10 Log-Likelihood: -70.701
No. Observations: 15 AIC: 149.4
Df Residuals: 11 BIC: 152.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 229.9469 368.794 0.624 0.546 -581.763 1041.657
C(dose)[T.1] -109.8142 424.284 -0.259 0.801 -1043.656 824.028
expression -23.5862 53.495 -0.441 0.668 -141.328 94.156
expression:C(dose)[T.1] 23.0772 61.531 0.375 0.715 -112.352 158.506
Omnibus: 2.636 Durbin-Watson: 0.839
Prob(Omnibus): 0.268 Jarque-Bera (JB): 1.874
Skew: -0.836 Prob(JB): 0.392
Kurtosis: 2.547 Cond. No. 547.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.360
Method: Least Squares F-statistic: 4.938
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0273
Time: 04:28:10 Log-Likelihood: -70.797
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 109.7573 175.860 0.624 0.544 -273.409 492.924
C(dose)[T.1] 49.1959 15.702 3.133 0.009 14.985 83.407
expression -6.1432 25.468 -0.241 0.813 -61.634 49.347
Omnibus: 2.807 Durbin-Watson: 0.796
Prob(Omnibus): 0.246 Jarque-Bera (JB): 2.010
Skew: -0.866 Prob(JB): 0.366
Kurtosis: 2.534 Cond. No. 159.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:28:10 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.074
Method: Least Squares F-statistic: 0.03479
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.855
Time: 04:28:10 Log-Likelihood: -75.280
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 136.0714 227.560 0.598 0.560 -355.542 627.684
expression -6.1542 32.993 -0.187 0.855 -77.431 65.123
Omnibus: 0.809 Durbin-Watson: 1.662
Prob(Omnibus): 0.667 Jarque-Bera (JB): 0.652
Skew: 0.051 Prob(JB): 0.722
Kurtosis: 1.984 Cond. No. 158.