AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.551 0.467 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.713
Model: OLS Adj. R-squared: 0.668
Method: Least Squares F-statistic: 15.77
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.17e-05
Time: 03:55:56 Log-Likelihood: -98.732
No. Observations: 23 AIC: 205.5
Df Residuals: 19 BIC: 210.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 35.8085 38.212 0.937 0.360 -44.170 115.787
C(dose)[T.1] 179.3282 66.075 2.714 0.014 41.032 317.624
expression 2.6757 5.496 0.487 0.632 -8.828 14.180
expression:C(dose)[T.1] -17.8115 9.329 -1.909 0.071 -37.338 1.714
Omnibus: 0.821 Durbin-Watson: 1.851
Prob(Omnibus): 0.663 Jarque-Bera (JB): 0.767
Skew: 0.187 Prob(JB): 0.681
Kurtosis: 2.188 Cond. No. 142.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.28
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.16e-05
Time: 03:55:56 Log-Likelihood: -100.75
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.3228 33.043 2.370 0.028 9.396 147.250
C(dose)[T.1] 54.1496 8.721 6.209 0.000 35.959 72.340
expression -3.5067 4.726 -0.742 0.467 -13.364 6.351
Omnibus: 0.466 Durbin-Watson: 1.880
Prob(Omnibus): 0.792 Jarque-Bera (JB): 0.561
Skew: -0.031 Prob(JB): 0.756
Kurtosis: 2.238 Cond. No. 55.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:55:56 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0005146
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.982
Time: 03:55:56 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 78.4764 55.177 1.422 0.170 -36.271 193.224
expression 0.1776 7.829 0.023 0.982 -16.103 16.458
Omnibus: 3.297 Durbin-Watson: 2.490
Prob(Omnibus): 0.192 Jarque-Bera (JB): 1.577
Skew: 0.295 Prob(JB): 0.455
Kurtosis: 1.861 Cond. No. 55.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.305 0.060 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.600
Model: OLS Adj. R-squared: 0.491
Method: Least Squares F-statistic: 5.503
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0148
Time: 03:55:56 Log-Likelihood: -68.425
No. Observations: 15 AIC: 144.9
Df Residuals: 11 BIC: 147.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 168.2793 61.827 2.722 0.020 32.199 304.359
C(dose)[T.1] 10.7621 81.497 0.132 0.897 -168.612 190.136
expression -19.0050 11.491 -1.654 0.126 -44.296 6.286
expression:C(dose)[T.1] 6.2662 15.673 0.400 0.697 -28.231 40.763
Omnibus: 0.716 Durbin-Watson: 1.582
Prob(Omnibus): 0.699 Jarque-Bera (JB): 0.713
Skew: -0.379 Prob(JB): 0.700
Kurtosis: 2.249 Cond. No. 84.5

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.594
Model: OLS Adj. R-squared: 0.527
Method: Least Squares F-statistic: 8.790
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00446
Time: 03:55:56 Log-Likelihood: -68.534
No. Observations: 15 AIC: 143.1
Df Residuals: 12 BIC: 145.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 150.4073 41.189 3.652 0.003 60.665 240.150
C(dose)[T.1] 42.8347 13.846 3.094 0.009 12.666 73.003
expression -15.6371 7.536 -2.075 0.060 -32.057 0.783
Omnibus: 0.270 Durbin-Watson: 1.537
Prob(Omnibus): 0.874 Jarque-Bera (JB): 0.430
Skew: -0.206 Prob(JB): 0.807
Kurtosis: 2.280 Cond. No. 33.1

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:55:56 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.271
Model: OLS Adj. R-squared: 0.215
Method: Least Squares F-statistic: 4.828
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0467
Time: 03:55:56 Log-Likelihood: -72.932
No. Observations: 15 AIC: 149.9
Df Residuals: 13 BIC: 151.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.5261 48.955 4.076 0.001 93.765 305.287
expression -20.7994 9.466 -2.197 0.047 -41.250 -0.348
Omnibus: 2.299 Durbin-Watson: 2.257
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.657
Skew: 0.777 Prob(JB): 0.437
Kurtosis: 2.514 Cond. No. 30.2